A New Ultrahigh Strength Al-Cu-Li Alloy

Article Preview

Abstract:

In this work, a new ultra-high strength Al-Cu-Li alloy was investigated. The ultimate strength, yield strength and elongation of the newly designed alloy by artificial aging are 647.2MPa, 609.4MPa and 7.3% respectively. Among the main strengthening phases of T1, θ′ and S′ in the experimental alloys, T1 is the dominant one. The combined addition of Mg and Ag promoted the precipitation of T1 and increased the strength of the new alloy greatly. Zn had a similar effect as Ag during the aging strengthening progress, when added with Mg. Among the three micro-alloying elements, Mg, Ag and Zn, Mg had the strongest influence on age strengthening. Compared with the combined additions of (Mg +Ag) and (Mg + Zn), (Ag + Zn) had the weakest influence on aging strengthening. Pre-deformation before aging promoted the precipitation of T1 phase which weakened the influence of micro-alloying elements (Mg, Ag and Zn) on strengthening the alloys and minished the strength difference between alloy containing (Mg + Ag + Zn) and alloys containing two of them.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 794-796)

Pages:

1050-1056

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] N. JIANG, X. GAO, Z. ZHENG, T. Nonferr. Metal. Soc. 20 (2010) 740-745.

Google Scholar

[2] M. C. Chaturvedi, D. L. Chen, Materials Science and Engineering: A (2004) 465-469.

Google Scholar

[3] M. L. Bairwa, S. G. Desai, P. P. Date, J. Mater. Eng. Perform. 14 (2005) 623-633.

Google Scholar

[4] D. Ortiz, J. Brown, M. Abdelshehid, P. DeLeon, R. Dalton, L. Mendez, J. Soltero, M. Pereira, M. Hahn, E. Lee, J. Ogren, R. C. Jr, J. Foyos, O. S. Es-Said, Eng. Fail. Anal. 13 (2006) 170-180.

DOI: 10.1016/j.engfailanal.2004.10.008

Google Scholar

[5] M. Romios, R. Tiraschi, J. R. Ogren, O. S. Es-Said, C. Parrish, H. W. Babel, J. Mater. Eng. Perform. 14 (2005) 641-646.

DOI: 10.1361/105994905x64594

Google Scholar

[6] T. S. Srivatsan, S. Anand, S. Sriram, V. K. Vasudevan, Materials Science and Engineering: A 281 (2000) 292-304.

Google Scholar

[7] G. Itoh, Q. Cui, M. Kanno, Materials Science and Engineering: A 211 (1996) 128-137.

Google Scholar

[8] B. P. Huang, Z. Q. Zheng, Acta Mater. 46 (1998) 4381-4393.

Google Scholar

[9] S. Hirosawa, T. Sato, A. Kamio, Materials Science and Engineering: A 242 (1998) 195-201.

Google Scholar

[10] M. Murayama, K. Hono, Scripta Mater. 44 (2001) 701-706.

Google Scholar

[11] T. Honma, S. Yanagita, K. Hono, Y. Nagai, M. Hasegawa, Acta Mater. 52 (2004) 1997-(2003).

Google Scholar

[12] M. C. Carroll, P. I. Gouma, M. J. Mills, G. S. Daehn, B. R. Dunbar, Scripta Mater. 42 (2000) 335-340.

DOI: 10.1016/s1359-6462(99)00349-8

Google Scholar

[13] R. J. Rioja, J. Liu, Metallurgical and Materials Transactions A 43 (2012) 3325-3337.

Google Scholar

[14] R. J. Kilmer, G. E. Stoner, Scripta Metallurgica et Materialia 25 (1991) 243-248.

DOI: 10.1016/0956-716x(91)90388-h

Google Scholar

[15] K. Dinsdale, B. Noble, S. J. Harris, P. J. Gregson, Materials Science and Engineering: A (1988) 75-84.

Google Scholar

[16] X. J. Jiang, Y. Y. Li, W. Deng, Q. H. Gui, L. Y. Xiong, C. X. Shi, J. Mater. Sci. Lett. 12 (1993) 1375-1377.

Google Scholar

[17] A. K. Niessen, F. R. de Boer, R. Boom, P. F. de Châtel, W. C. M. Mattens, A. R. Miedema, Calphad 7 (1983) 51-70.

DOI: 10.1016/0364-5916(83)90030-5

Google Scholar

[18] S. C. Wang, M. J. Starink, International Materials Reviews 50 (2005) 193-215.

Google Scholar

[19] T. Sato, S. Hirosawa, K. Hirose, T. Maeguchi, Metallurgical and Materials Transactions A 34 (2003) 2745-2755.

Google Scholar