2H-AlGaN/GaN HEMTs on 3C-SiC(111)/Si(111) Substrates

Article Preview

Abstract:

We present the realization of high electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures grown on silicon substrates using a SiC transition layer. The growth of AlGaN/GaN heterostructures on Si (111) was performed using metalorganic chemical vapour deposition (MOCVD). The (111) SiC transition layer was realized by low pressure CVD and prevented Ga-induced meltback etching and Si-outdiffusion in the subsequent MOCVD growth. The two-dimensional electron gas (2DEG) formed at the AlGaN/GaN interface showed an electron sheet density of 1.5x1013 cm-3 and a mobility of 870 cm²/Vs proving the high structural quality of the heterostructure. Device processing was done using electron beam lithography. DC and RF characteristics were analysed and showed a peak cut-off frequency as high as 6 GHz for a 1.2 µm gate HEMT.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 645-648)

Pages:

1219-1222

Citation:

Online since:

April 2010

Export:

Price:

[1] D.C. Dumka, C. Lee, H.Q. Tsern, P. Saumier, and M. Kumar: Electron. Lett. Vol. 40 (2004), p.1023.

Google Scholar

[2] J.W. Johnson, E.L. Piner, A. Vescan, R. Therrien, P. Rajagopal, J.C. Roberts, J.D. Brown, S. Singhal, and K.L. Linthicum: IEEE Electr. Dev. Lett. Vol. 25 (2004), p.459.

DOI: 10.1109/led.2004.831190

Google Scholar

[3] Y. Cordier, M. Portail, S. Chenot, O. Tottereau, M. Zielinski, and Th. Chassagne: J. Cryst. Growth Vol. 310 (2008), p.4417.

DOI: 10.1016/j.jcrysgro.2008.07.063

Google Scholar

[4] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki and I. Akasaki: J. Cryst. Growth Vol. 115 (1991), p.635.

Google Scholar

[5] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg. F. A. Ponce, J. Christen and A. Krost, phys. stat. sol. (c) Vol. 0 (2003).

DOI: 10.1002/pssc.200303122

Google Scholar

[6] Ch. Förster, V. Cimalla, O. Ambacher and J. Pezoldt: Mater. Sci. Forum Vol. 483-485 (2005), p.201.

DOI: 10.4028/www.scientific.net/msf.483-485.201

Google Scholar

[7] S. Nishino, J.A. Powell and H.A. Will: Appl. Phys. Lett. Vol. 42 (1983), p.460.

Google Scholar

[8] D. K. Schroder: Semiconductor Material and Device Characterization, J. Wiley & Sons, (1990).

Google Scholar

[9] F. Schwierz and J. J. Liou: Modern Microwave Transistors, J. Wiley & Sons, (2003).

Google Scholar

[10] D. Ducatteau, A. Minko, V. Hoel, E. Morvan, E. Delos, B. Grimbert, H. Lahreche, P. Bove, C. Gaquiere, J. C. De Jaeger, and S. Delage: IEEE Electron Device Lett. Vol. 27 (2006), p.7.

DOI: 10.1109/led.2005.860385

Google Scholar

[11] S. Therrien et al.: Tech. Dig. IEDM paper Vol. 23. 1 (2005), p.568.

Google Scholar

[12] A. Minko et al.: IEEE Electron Device Lett. Vol. 25 (2004), p.167.

Google Scholar

[13] A. Minko et al.: IEEE Electron Device Lett. Vol. 25 (2004), p.453.

Google Scholar

[14] J. W. Johnson et al.: IEEE Electron Device Lett. Vol. 25 (2004), p.459.

Google Scholar

[15] R. Behtash et al.: Electron. Lett. Vol. 39 (2003), p.626.

Google Scholar

[16] P. Waltereit, S. Müller, K. Bellmann, C. Buchheim, R. Goldhahn, K. Köhler, L. Kirste, M. Baeumler, M. Dammann, W. Bronner, R. Quay, and O. Ambacher: J. Appl. Phys. Vol. 106 (2009).

DOI: 10.1063/1.3184348

Google Scholar

[12] (this work).

Google Scholar