Role of Rhenium in Single Crystal Ni-Based Superalloys

Article Preview

Abstract:

The effect of rhenium on the microstructure and mechanical properties of single crystal superalloys with a nominal composition of Ni-3Cr-12Co-1Mo-6W-6Al-8Ta-0.1Hf-(0, 2, 4) Re has been studied. With the rise of rhenium content, the size of as-cast  particles becomes smaller. Rhenium addition elevates the incipient melting temperature and slows down the solid solution process. Even after 2000h prolonged aging both at 950°C and 1050°C, no topologically close-packed phase precipitation is found in the three alloys with Re content up to 4%. Re retards the  coarsening and is beneficial to improving the stress rupture life. The deformation mechanisms together with the dislocation configuration have been studied and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 638-642)

Pages:

2257-2262

Citation:

Online since:

January 2010

Export:

Price:

[1] K.A. A1-Jarba, G.E. Fuchs: Mater. Sci. Eng. A 373 (2004).

Google Scholar

[2] A.C. Yeh, A. Sato, T. Kobayashi, H. Harada: Mater. Sci. Eng. A 490 (2008) 445-451.

Google Scholar

[3] P. Caron, T. Khan: Materials for Advanced Power Engineering 1998, part Ⅱ. The Netherlands. 1998: 897-912.

Google Scholar

[4] G.L. Erickson: Superalloys 1996. TMS, Warrendale, PA. 1996: 35-44.

Google Scholar

[5] C.L. Fu, R.C. Reed, A. Janotti, M. Krcmar: Superalloys 2004. TMS, Warrendale, PA. 2004: 867-876.

Google Scholar

[6] W.Z. Wang, T. Jin, J.L. Liu, X.F. Sun, H.R. Guan, Z.Q. Hu: Mater. Sci. Eng. A 479 (2008) 148-156.

Google Scholar

[7] D. Blavette, P. Caron, T. Khan: Scripta Mater. 20 (1986) 1395-1400.

Google Scholar

[8] D. Blavette, P. Caron, T. Khan: Superalloys 1988. TMS, Warrendale, PA. 1988: 305-314.

Google Scholar

[9] J.X. Zhang, J.C. Wang, H. Harada, Y. Koizumi: Acta Mater. 53 (2005) 4623-4633.

Google Scholar

[10] M.V. Acharya, G.E. Fuchs: Mater. Sci. Eng A. 381 (2004) 143-153.

Google Scholar

[11] C.M.F. Rae, R.C. Reed: Acta Mater. 49 (2001) 4113- 4125.

Google Scholar

[12] A.F. Giamei, D.L. Anton: Metall. Trans A 16 A (1985) 1997-(2005).

Google Scholar

[13] C.M.F. Rae, M.S.A. Karunaratne, C.J. Small, R.W. Broomfield, C.N. Jones, R.C. Reed: Superalloys 2000. TMS, Warrendale, PA. 2000: 767-776.

Google Scholar

[14] W.S. Walston, W. Ross, T.M. Pollock, K.S. O'Hara, W.H. Murphy.: United States Patent 5, 455, 120.

Google Scholar

[15] W.S. Walston, J.C. Schaeffer, W.H. Murphy: Superalloys 1996. TMS, Warrendale, PA. 1996: 9-18.

Google Scholar

[16] W.S. Walston, K.S. O'Hara, E.W. Ross, T.M. Pollock, W.H. Murphy. René N6: Third generation single crystal superalloy,. Superalloys 1996. TMS, Warrendale, PA. 1996: 27-34.

DOI: 10.7449/1996/superalloys_1996_27_34

Google Scholar

[17] P. Caron, T. Khan.: Mater. Sci. Eng. 61 (1983) 173-184.

Google Scholar

[18] T. Murakumo, T. Kobayashi, Y. Koizumi, H. Harada: Acta Mater. 52 (2004) 3737-3744.

Google Scholar

[19] K. Kakehi: Mater. Sci. Eng A. 278 (2000) 135-141.

Google Scholar

[20] F.R.N. Nabarro, H.L. de Villiers: The Physics of Creep. Taylor & Francis Ltd, 1995. P209, P86.

Google Scholar

[21] K. Harris, G.L. Erickson: United States Patent 4, 643, 782.

Google Scholar

[22] G.E. Fuchs: J. Mater. Eng and Perf. 11 (2002) 19-25.

Google Scholar