Abnormal Tin Whisker Growth in Rare Earth Element-Doped Sn3Ag0.5CuXCe Solder Joints

Article Preview

Abstract:

In this study, 0.1~1.0 wt.% of pure Ce was added into a Sn3Ag0.5Cu solder alloy, resulting in the formation of precipitated CeSn3 clusters of a size greater than 20 1m in the reflowed solder matrix. After natural aging at room temperature for more than 3 days, oxidation on the surface of the CeSn3 clusters was much heavier than in the undoped Sn3Ag0.5Cu solder matrix. In addition, many tin whiskers with a diameter of about 0.1 to 0.3 μm had been squeezed out of the oxide layer of the CeSn3 precipitates. The increase in aging time at room temperature causes the tin whiskers to grow rapidly. The whiskers can grow even to a length of over 300 μm after 21 days of storage. The whisker growth rate in one particular case reached 8.6Å/s after room temperature storage for only one day. The whiskers formed during storage at a higher temperature (1500C have a coarse diameter of 1 to 3 μm. In some cases, high temperature storage results in the formation of short whiskers in a hillock shape with a diameter of about 5 to 10 μm.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Pages:

4019-4024

Citation:

Online since:

March 2007

Export:

Price:

[1] K. Zeng and K. N. Tu, Mater. Sci. Eng. R., 38 (2002) p.55.

Google Scholar

[2] B. L. Chen and G. Y. Li, 53th Electronic Components and Technology Conf., New Orleans, 27-30 May 2003, p.1235.

Google Scholar

[3] X. Ma, F. Wang, Y. Qian and F. Yoshida, Mater. Let., 57 (2003) p.3361.

Google Scholar

[4] B. L. Chen and G. Y. Li, Thin Solid Film, 462-463 (2004) p.395.

Google Scholar

[5] I. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R. L. Terpstra, and O. Unal, J. Electron. Mater., 30 (2001) p.1050.

Google Scholar

[6] J. Zhao, L. Qi, X. M. Wang, and L. Wang, J. Alloys and Compounds, 375 (2004) p.196.

Google Scholar

[7] M. Yamashita, S. Tada, and K. Shiokawa, (Fuzi Electric. Co. ): Solder Alloys, US Patent 6, 179, 935 B1 (2001).

Google Scholar

[8] Habu, N. Takeda, H. Wstanabe, H. Ooki, J. Abe, T. Saito, Y. Taniguchi, and K. Takayama, IEEE Int. Symp. Eco Design, (l999) p.21 and p.606.

Google Scholar

[9] T. H. Chuang, S. F. Yen and H. M. Wu, J. Electron. Mater., 35 (2006) in press.

Google Scholar

[10] T. H. Chuang, S. F. Yen and H. D. Cheng, J. Electron. Mater., 35 (2006) in press.

Google Scholar

[11] Z. G. Chen, Y. W. Shi, Z. D. Xia, and Y. F. Yan, J. Electron. Mater., 31 (2002) p.1122.

Google Scholar

[12] Z. Chen, Y. Shi, and Z. Xia, J. Electron. Mater., 33 (2004) P. 964.

Google Scholar

[13] W. C. Ellis, D. F. Gibbons, and R. C. Treuting, Growth and Perfection of Crystals, edited by R. H. Doremus, B. W. Roberts, and D. Turbull (John Wiley & Sons, New York, 1958).

Google Scholar

[14] N. Furuta and K. Hamamura, Jpn. J. App. Phys. 9, 12 (1969) p.1404.

Google Scholar

[15] K. Chen and G. D. Wilcox, Phys. Rev. Let., 94 (2005) p.066104.

Google Scholar

[16] K. N. Tu, Acta Metal., 21 (1973) p.347.

Google Scholar

[17] S. H. Liu, C. Chen, P. C. Liu and T. Chou, J. App. Phys. 95, 12 (2004) p.7742.

Google Scholar