Progress of Directional Solidification in Processing of Advanced Materials

Article Preview

Abstract:

Most of materials have long been considered to be mechanical and/or physical anisotropy. Permitting materials to grow along specific orientation by means of directional solidification technique can optimize their structural or functional properties. The present paper attempts to introduce the research work in the field of processing of some advanced materials by innovative directional solidification techniques performed at State Key Laboratory of Solidification Processing and with author’s intended research work. The paper deals with the specific topics on directional solidification of following advanced materials: column and single crystal superalloys under high thermal gradient, Ni-Cu alloys under deep supercooling of the melt, intermetallic compounds with selected preferential crystal orientation, superalloys with container less electromagnetic confinement, high Tc superconducting oxides, high temperature structural ceramics, continuous cast single crystal copper and copper-based composites. The relevant solidification phenomena, such as morphological evolution, phase selection, peritectic reaction and aligned orientation relationship of crystal growth for multi-phases in the processing of directional solidification, are discussed briefly. The trends of developments of directional solidification technique are also prospected.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volumes 475-479)

Pages:

607-612

Citation:

Online since:

January 2005

Authors:

Export:

Price:

[1] F. L. VerSnyder, and R. W. Guard: Tans. ASM, Vol. 52 (1960), p.485.

Google Scholar

[2] H. Z. Fu, and X. G. Geng: Science and Technology of Advanced Materials, Vol. 2 (2001), p.197.

Google Scholar

[3] M. Konter, and M. Thumann: Journal of Materials Processing Technology, Vol. 117 (2001), p.386.

Google Scholar

[4] L. Lohmueller, W. Esser, J. Grossmann, M. Hoerdler, J. Preuhs, R. F. Singer: in Superalloy 2000, TMS, Warrendale, PA, 2000, p.181.

Google Scholar

[5] M. Konter, E. Kats, N. Hofmann: in Superalloy 2000, TMS, Wrrrendale, 2000, p.189.

Google Scholar

[6] H. Z. Fu and F. Q. Xie: Science and Technology of Advanced Materials, Vol. 2 (2001), p.193.

Google Scholar

[7] Z. H. Zhou, and H. Z. Fu: J. Mater. Sci. Lett., Vol. 19, (2000), p.1491.

Google Scholar

[8] H. Z. Fu, J. Shen, L. Liu, Q. T. Hao, S. M. Li, and J. S. Li: Journal of Materials Processing Technology, Vol. 148 (1), (2004), p.25.

Google Scholar

[9] H. Z. Fu, J. J. Guo, Y. Q. Su, L. Liu, D. M. Xu, and J. S. Li: The Chinese Journal of Nonferrous Metals, Vol. 13 (4), (2003), p.797. (In Chinese).

Google Scholar

[10] J. Boudaden, M. Loghmarti, D. Balluyaud, A. Reviere, R. Luedemann, A. Slaoui, J. C. Muller: Solar Materials and Solar Cells, 65, (2001), p.517.

DOI: 10.1016/s0927-0248(00)00135-5

Google Scholar

[11] F. Zupannic, T. Bonsina, A. Krizman, and F. D. Tichelaar: Mater. Sci. Techn., Vol. 18, (2002), p.811.

Google Scholar

[12] F. Appel, U. Brossmann, U. Christoph, S. Eggert, P. Janschek, U, Lorenz, J. Muellauer, M. Oehring, and J. D. H. Paul: Advanced Engineering Materials, Vol. 2, (2000), p.699.

DOI: 10.1002/1527-2648(200011)2:11<699::aid-adem699>3.0.co;2-j

Google Scholar

[13] M. Mueller: Crystal Growth from the Melt, Springer-Verlag, Berlin, (1988).

Google Scholar

[14] M. L. Clemers, A. Price, R. S. Bellows: JOM, Vol. 55, (2003), p.27.

Google Scholar

[15] A. Sayir, S. C. Farmer: Acta. Mater., Vol. 48, (2000), p.4691.

Google Scholar

[16] T. Kawase, Y. Nakamura, T. Izumi, K. Murata, Y. Shiohara: Physica C, Vol. 357-360, (2001), p.673.

Google Scholar