Mechanical and Wettability Performance of Sand/HDPE Composite Sheets

Article Preview

Abstract:

Polymer/composite sheets were developed using sand as the filler, and high-density polyethylene (HDPE), by melting extrusion in a melt blender followed by compression molding. The effects of addition of filler, and the addition of polyethylene grafted maleic anhydride (PE-g-MA) as the compatibilizing agent were investigated by observing the morphology, the mechanical performance as well as the wettability characteristic via contact angle measurements. A decreasing trend was observed with filler addition, both for the Young’s modulus and yield stress values of each of the samples, from 1200.81 MPa and 35.15 MPa at 0 wt% to 1182.33 MPa and 23.11 MPa for the non-compatibilized sheet at 35 wt%, to 629.95 MPa and 9.56 MPa in the case of the compatibilized sheet respectively. However, addition of filler did not significantly affect the surface wetting in any case, thereby promoting good anti-wetting performance for both sets of sheets. As a result, the potential use of such synthetic composite sheets could be considered as a good alternative for applications which require reduced ductility or increased anti-wetting performance.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1015)

Pages:

9-14

Citation:

Online since:

November 2020

Export:

Price:

* - Corresponding Author

[1] Doeff, M. M., Visco, S. J., Yanping, M., Peng, M., Lei, D., & De Jonghe, L. C. (1995). Thin film solid state sodium batteries for electric vehicles. Electrochimica acta, 40(13-14), 2205-2210.

DOI: 10.1016/0013-4686(95)00164-a

Google Scholar

[2] Pospieszna, J. (2001). Effect of surface treatment on polypropylene film-oil interactions. IEEE Transactions on Dielectrics and Electrical Insulation, 8(4), 710-713.

DOI: 10.1109/94.946727

Google Scholar

[3] Zhou, H., Xun, R., Zhou, Z., Liu, Q., Wu, P., & Wu, K. (2014). Preparation of collagen fiber/CaCO 3 hybrid materials and their applications in synthetic paper. Fibers and Polymers, 15(3), 519-524.

DOI: 10.1007/s12221-014-0519-y

Google Scholar

[4] Wang, Y., Shi, J., Han, L., & Xiang, F. (2009). Crystallization and mechanical properties of T-ZnOw/HDPE composites. Materials Science and Engineering: A, 501(1-2), 220-228.Rothon, R. N. Particulate-Filled Polymer Composites; Longman Scientific and Technical: Harlow, (1995).

DOI: 10.1016/j.msea.2008.09.061

Google Scholar

[5] Rothon, R. N. (1999). Mineral fillers in thermoplastics: filler manufacture and characterisation. In Mineral Fillers in Thermoplastics I (pp.67-107). Springer, Berlin, Heidelberg.Argon, A. S.; Bartczak, Z.; Cohen, R. E.; Muratoglu, O. K. Toughening of Plastics, Advances in Modeling and Experiments, Symposium Series 759; Pearson, R. A., Sue, H. J., Yee,F., Eds.; ACS: Washington, DC, 2000; p.98.

DOI: 10.1007/3-540-69220-7_2

Google Scholar

[6] Bhattachrya, S.; Gupta, R.; Kamal, M. R. Polymeric Nanocomposite: Theory and Practice; Hanser: Munich, Germany, 2007; Chapter 1.

Google Scholar

[7] H. X. Nguyen and H. Ishida, Poly(aryl-ether-ether-ketone) and its advanced composites: A review,, Polym. Compos., vol. 8, no. 2, p.57–73, Apr. (1987).

DOI: 10.1002/pc.750080202

Google Scholar

[8] Menendez, H., & White, J. L. (1984). A wide‐angle X‐ray diffraction method of determining chopped fiber orientation in composites with application to extrusion through dies. Polymer Engineering & Science, 24(13), 1051-1055.Shen, J., Song, Z., Qian, X., & Ni, Y. (2010). A review on use of fillers in cellulosic paper for functional applications. Industrial & Engineering Chemistry Research, 50(2), 661-666.

DOI: 10.1002/pen.760241310

Google Scholar

[9] R. H. Elleithy, I. Ali, M. A. Ali, and S. M. Al‐Zahrani, High density polyethylene/micro calcium carbonate composites: A study of the morphological, thermal, and viscoelastic properties,, J. Appl. Polym. Sci., vol. 117, no. 4, p.2413–2421, Aug. (2010).

DOI: 10.1002/app.32142

Google Scholar

[10] Chauhan, I., Chattopadhyay, S., & Mohanty, P. (2013). Fabrication of titania nanowires incorporated paper sheets and study of their optical properties. Materials Express, 3(4), 343-349.

DOI: 10.1166/mex.2013.1136

Google Scholar

[11] Shen, J., Song, Z., Qian, X., & Ni, Y. (2011). A review on use of fillers in cellulosic paper for functional applications. Industrial & Engineering Chemistry Research, 50(2), 661-666.

DOI: 10.1021/ie1021078

Google Scholar

[12] Rane, A. V., Kanny, K., Abitha, V. K., & Thomas, S. (2018). Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials (pp.121-139). Woodhead Publishing.

DOI: 10.1016/b978-0-08-101975-7.00005-1

Google Scholar

[13] Yin, J., Kim, E. S., Yang, J., & Deng, B. (2012). Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification. Journal of membrane science, 423, 238-246.

DOI: 10.1016/j.memsci.2012.08.020

Google Scholar

[14] Watcharotone, S., Dikin, D. A., Stankovich, S., Piner, R., Jung, I., Dommett, G. H., ... & Nguyen, S. T. (2007). Graphene− silica composite thin films as transparent conductors. Nano letters, 7(7), 1888-1892.

DOI: 10.1021/nl070477+

Google Scholar

[15] Fabbri, P., & Messori, M. (2017). Surface modification of polymers: chemical, physical, and biological routes. In Modification of Polymer Properties (pp.109-130). William Andrew Publishing.

DOI: 10.1016/b978-0-323-44353-1.00005-1

Google Scholar

[16] Mittal, V., & Chaudhry, A. U. (2015). Effect of amphiphilic compatibilizers on the filler dispersion and properties of polyethylene—thermally reduced graphene nanocomposites. Journal of Applied Polymer Science, 132(35).

DOI: 10.1002/app.42484

Google Scholar

[17] Jesionowski, T., Bula, K., Janiszewski, J., & Jurga, J. (2003). The influence of filler modification on its aggregation and dispersion behaviour in silica/PBT composite. Composite Interfaces, 10(2-3), 225-242.

DOI: 10.1163/156855403765826883

Google Scholar

[18] Albano, C., Cataño, L., Figuera, L., Perera, R., Karam, A., González, G., & Noris, K. (2009). Evaluation of a composite based on high-density polyethylene filled with surface-treated hydroxyapatite. Polymer Bulletin, 62(1), 45-55.

DOI: 10.1007/s00289-008-1011-x

Google Scholar

[19] Raj, R. G., Kokta, B. V., Grouleau, G., & Daneault, C. (1990). The influence of coupling agents on mechanical properties of composites containing cellulosic fillers. Polymer-Plastics Technology and Engineering, 29(4), 339-353.

DOI: 10.1080/03602559008049849

Google Scholar

[20] C.Ana, S. Cristiano, M. Sati, Synthetic Paper from Plastic Waste: The Effect of CaCO3 on Physical, Surface Properties and Printability - Corrêa - 2006 - Macromolecular Symposia - Wiley Online Library.".

DOI: 10.1002/masy.200651388

Google Scholar

[21] Krupa, I., Cecen, V., Boudenne, A., Prokeš, J., & Novák, I. (2013). The mechanical and adhesive properties of electrically and thermally conductive polymeric composites based on high density polyethylene filled with nickel powder. Materials & Design, 51, 620-628.

DOI: 10.1016/j.matdes.2013.03.067

Google Scholar