Current-Mode Deep Level Spectroscopy of Vanadium-Doped HPSI 4H-SiC

Article Preview

Abstract:

SiC has currently attracted the interest of the scientific community for qubit applications. Despite the importance given to the properties of color centers in high-purity semi-insulating SiC, little is known on the electronic properties of defects in this material. In our study, we investigated the presence of electrically active levels in vanadium-doped substrates. Current mode deep level transient spectroscopy, carried out in the dark and under illumination, together with 1-D simulations showed the presence of two electrically active levels, one associated to a majority carrier trap and the other one to a minority carrier trap. The nature of the detected defects has been discussed in the light of the characterization performed on low-energy electron irradiated substrates and previous results found in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1004)

Pages:

331-336

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] K. C. Mandal, R. M. Krishna, P. G. Muzykov, S. Das, and T. S. Sudarshan, IEEE Trans. Nucl. Sci. 58 (2011) (1992).

Google Scholar

[2] K. C. Mandal, P. G. Muzykov, R. M. Krishna, and J. R. Terry, IEEE Trans. Nucl. Sci. 59 (2012) 1591.

Google Scholar

[3] J. S. Sullivan and J. R. Stanley, IEEE Trans. Dielectr. Electr. Insul. 14 (2007) 980.

Google Scholar

[4] S. Jiang, C. Song, L. Zhang, Y. Zhang, W. Huang, and H. Guo, IEEE Trans. Electron Devices 63 (2016) 1582.

Google Scholar

[5] W. F. Koehl, B. B. Buckley, F. J. Heremans, G. Calusine, and D. D. Awshalom, Nature 479 (2011) 84.

Google Scholar

[6] D. A. Golter and C. W. Lai, Sci. Rep. 7 (2017) 13406.

Google Scholar

[7] H. Kaneko and T. Kimoto, Appl. Phys. Lett. 98 (2011) 262106.

Google Scholar

[8] N.T. Son, P. Carlsson, J.ul Hassan, B. Magnusson, E. Janzen, Phys. Rev. B 75 (2007) 155204.

Google Scholar

[9] N. T. Son, P. Carlsson, J. Ul Hassan, E. Janzen, T. Umeda, J. Isoya, A. Gali, M. Bockstedte, N. Morishita, T. Ohshima, and H. Itoh, Phys. Rev. Lett. 96 (2006) 055501.

DOI: 10.1103/physrevlett.96.069902

Google Scholar

[10] G. Alfieri, T. Kimoto, and G. Pensl, Mater. Sci. Forum 645–648 (2010) 455.

Google Scholar

[11] G. Alfieri, L. Knoll, L. Kranz, V. Sundaramoorthy, J. Appl. Phys. 123 (2018) 175304.

Google Scholar

[12] M.E. Zvanut, V.V. Konovalov, H. Wang, W.C. Mitchel, W.D. Mitchell, G. Landis, J. Appl. Phys. 96 (2004) 5484.

Google Scholar

[13] N. Iwamoto, A. Azarov, T. Ohshima, A. M. M. Moe, and B. G. Svensson, J. Appl. Phys. 118 (2015) 045705.

Google Scholar

[14] J. F. Ziegler et al., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).

Google Scholar

[15] H.J. von Bardeleben, J.L. Cantin, L. Henry, M.F. Barthe, Phys. Rev. B 62 (2000) 10841.

Google Scholar

[16] S. Weiss and R. Kassing, Solid State Electron. 31 (1998) 1733.

Google Scholar

[17] Z. Li, Nucl. Instrum. Methods Phys. Res. A 403, 399 (1998).

Google Scholar

[18] SimWindows, see www.simwindows.com for information and download of the software.

Google Scholar

[19] L. Torpo, M. Marlo, T.E.M. Staab, R.M. Nieminem, J. Phys: Condens. Matter 13 (2001) 6203.

Google Scholar

[20] A. Mattausch, PhD dissertation, University of Erlangen-Nurnberg (2005) (available at https://opus4.kobv.de/opus4-fau/files/Diss_A5).

Google Scholar

[21] R. Aavikko, K. Saarinen, F. Tuomisto, B. Magnusson, N.T. Son, E. Janzen, Phys. Rev. B 75, 085208 (2007).

Google Scholar

[22] W.C. Mitchel, W.D. Mitchell, G. Landis, H. E. Smith, W. Lee, M. E. Zvanut, J. Appl. Phys. 101 (2007) 013707.

Google Scholar