Investigation of Dynamic Recrystallization Phenomenon in Drawn Ti-6Al-4V Alloy

Article Preview

Abstract:

The microstructure evolution during the drawing process of Ti-6Al-4V alloy with a lamellar morphology as an initial microstructure was investigated. Microstructure analysis on specimens with a different reduction ratio supported by 2D-drawing process simulation using DEFORMTM was utilized to examine the deformed state and microstructure behavior of the alloy. Dynamic recrystallization (DRX) phenomenon on the high reduction ratio (52.7%) was achieved fine equiaxed grain. A Zenner-Holllomon calculation using temperature and strain rates was also conducted to evaluate the DRX. Furthermore, a higher drawing reduction ratio attributed to a high fraction of kinked lamellar, which DRX occurred in the shear band and the regions of broken lath or kinked.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1000)

Pages:

419-427

Citation:

Online since:

July 2020

Export:

Price:

* - Corresponding Author

[1] R.J.H. Wanhill, Aerospace Materials and Material Technologies, 2017.

Google Scholar

[2] J. Porntadawit, V. Uthaisangsuk, P. Choungthong, Modeling of flow behavior of Ti-6Al-4V alloy at elevated temperatures, Mater. Sci. Eng. A. 599 (2014) 212–222.

DOI: 10.1016/j.msea.2014.01.064

Google Scholar

[3] S.L. Semiatin, K.T. Kinsel, A.L. Pilchak, G.A. Sargent, Effect of process variables on transformation-texture development in Ti-6Al-4V sheet following beta heat treatment, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 3852–3865.

DOI: 10.1007/s11661-013-1735-6

Google Scholar

[4] P.L. Narayana, C.L. Li, J.K. Hong, S.W. Choi, C.H. Park, S.W. Kim, S.E. Kim, N.S. Reddy, J.T. Yeom, Characterization of Hot Deformation Behavior and Processing Maps of Ti–19Al–22Mo Alloy, Met. Mater. Int. (2019).

DOI: 10.1007/s12540-019-00352-w

Google Scholar

[5] M.I. Utama, N. Park, E.R. Baek, Microstructure and Mechanical Features of Electron Beam Welded Dissimilar Titanium Alloys: Ti–10V–2Fe–3Al and Ti–6Al–4V, Met. Mater. Int. 25 (2019) 439–448.

DOI: 10.1007/s12540-018-0197-1

Google Scholar

[6] M.I. Utama, A.A. Ammar, N. Park, E.R. Baek, Origin of Surface Irregularities on Ti–10V–2Fe–3Al Beta Titanium Alloy, Met. Mater. Int. 24 (2018) 291–299.

DOI: 10.1007/s12540-018-0042-6

Google Scholar

[7] M. Iman Utama, J. Ageng Nugroho, A. Aziz Ammar, N. Park, E. Ryul Baek, Different Ratios of Electron Beam Welding of Dissimilar Titanium Alloys: Ti-10V-2Fe-3Al and Ti-6Al-4V, MATEC Web Conf. 269 (2019) 01003.

DOI: 10.1051/matecconf/201926901003

Google Scholar

[8] H.J. Kwon, K.R. Lim, Y.T. Lee, D.G. Lee, J.H. Lee, S.E. Kim, Effect of aging time and temperature on microstructure and mechanical properties of Ti-39Nb-6Zr alloy, J. Korean Inst. Met. Mater. 54 (2016) 925–930.

DOI: 10.3365/kjmm.2016.54.12.925

Google Scholar

[9] Y. Byun, S. Lee, C. Park, J. Yeom, N. Kang, J. Hong, The Effects of PWHT on Tensile Properties and Microstructures for Laser Welds of Ti-6Al-4V Alloys, J. Korean Inst. Met. Mater.35 (2017) 1–5.

DOI: 10.5781/jwj.2017.35.4.1

Google Scholar

[10] S. Park, S. Kim, D. Lee, S. Ahn, S. Kim, Effect of microstructural factors on fatigue and fatigue crack propagation behaviors of mill-annealed Ti-6Al-4V alloy, J. Korean Inst. Met. Mater. 56 (2018) 845–853.

DOI: 10.3365/kjmm.2018.56.12.845

Google Scholar

[11] J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, Y. Cao, Hot deformation behavior of Ti-15-3 titanium alloy: A study using processing maps, activation energy map, and Zener-Hollomon parameter map, J. Mater. Sci. 47 (2012) 4000–4011.

DOI: 10.1007/s10853-012-6253-1

Google Scholar

[12] K. Hua, X. Xue, H. Kou, J. Fan, B. Tang, J. Li, Characterization of hot deformation microstructure of a near beta titanium alloy Ti-5553, J. Alloys Compd. 615 (2014) 531–537.

DOI: 10.1016/j.jallcom.2014.07.056

Google Scholar

[13] S.H. Chen, M.C. Zhang, M.L. Jia, W. Li, Investigations on microstructure and grain orientation uniformity of Ti-17 titanium alloy under different hot deformation modes, J. Mater. Process. Technol. 252 (2018) 148–158.

DOI: 10.1016/j.jmatprotec.2017.04.023

Google Scholar

[14] G. Lutjering, J.C. Williams, Titanium, 2nd Editio, Springer Berlin, Heidelberg, (2007).

Google Scholar

[15] E.M. Rubio, A.M. Camacho, L. Sevilla, M.A. Sebastián, Calculation of the forward tension in drawing processes, J. Mater. Process. Technol. 162–163 (2005) 551–557.

DOI: 10.1016/j.jmatprotec.2005.02.122

Google Scholar

[16] K. Lambrighs, Fatigue Properties of Heavily Drawn Steel Wires, (2010).

Google Scholar

[17] N. A. Raji, O. O. Oluwole, Recrystallization Kinetics and Microstructure Evolution of Annealed Cold-Drawn Low-Carbon Steel, J. Cryst. Process Technol. 03 (2013) 163–169.

DOI: 10.4236/jcpt.2013.34025

Google Scholar

[18] U. Andrade, M.A. Meyers, K.S. Vecchio, A.H. Chokshi, Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper, Acta Metall. Mater. 42 (1994) 3183–3195.

DOI: 10.1016/0956-7151(94)90417-0

Google Scholar

[19] Y. Luo, Y. Heng, Y. Wang, X. Yan, Dynamic Recrystallization Behavior of TA15 Titanium Alloy under Isothermal Compression during Hot Deformation, Adv. Mater. Sci. Eng. 2014 (2014) 1–9.

DOI: 10.1155/2014/413143

Google Scholar

[20] A. Łukaszek-Sołek, J. Krawczyk, Processing Maps of the Ti-6Al-4V Alloy in a Forging Process Design, Key Eng. Mater. 641 (2015) 190–197.

DOI: 10.4028/www.scientific.net/kem.641.190

Google Scholar

[21] V. V. Balasubrahmanyam, Y.V.R.K. Prasad, Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging, Mater. Sci. Eng. A. 336 (2002) 150–158.

DOI: 10.1016/s0921-5093(01)01982-7

Google Scholar

[22] M. Hu, L. Dong, Z. Zhang, X. Lei, R. Yang, Y. Sha, A Novel Computational Method of Processing Map for Ti-6Al-4V Alloy and Corresponding Microstructure Study, Materials (Basel). 11 (2018) 1599.

DOI: 10.3390/ma11091599

Google Scholar

[23] J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, J.S. Li, Hot deformation mechanism and microstructure evolution of a new near β titanium alloy, Mater. Sci. Eng. A. 584 (2013) 121–132.

DOI: 10.1016/j.msea.2013.07.019

Google Scholar

[24] E. Sukedai, T. Yokoyama, Journal of Physics D : Applied Physics Related content Limitations of the Hollomon strain-hardening equation, (1974).

Google Scholar

[25] Z. Zhang, Q. Sun, C. Li, W. Zhao, Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials, J. Mater. Eng. Perform. 15 (2006) 19–22.

DOI: 10.1361/10599490524057

Google Scholar

[26] K. Huang, R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des. 111 (2016) 548–574.

DOI: 10.1016/j.matdes.2016.09.012

Google Scholar

[27] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014) 130–207.

DOI: 10.1016/j.pmatsci.2013.09.002

Google Scholar

[28] R.R. Eleti, T. Bhattacharjee, L. Zhao, P.P. Bhattacharjee, N. Tsuji, Hot deformation behavior of CoCrFeMnNi FCC high entropy alloy, Mater. Chem. Phys. 210 (2018) 176–186.

DOI: 10.1016/j.matchemphys.2017.06.062

Google Scholar

[29] Y. Chong, N. Tsuji, The Effect of Initial Microstructure on the Mechanical Properties of Bi-lamellar Ti-6Al-4V, TMS 2016 145th Annu. Meet. Exhib. (2016) 633–640.

DOI: 10.1007/978-3-319-48254-5_76

Google Scholar

[30] N. Bibhanshu, S. Suwas, Hot Deformation and Dynamic Recrystallization in Titanium Aluminide, Mater. Sci. Forum. 941 (2018) 1391–1396.

DOI: 10.4028/www.scientific.net/msf.941.1391

Google Scholar