Comparative Study of Sound Absorption Coefficients of Coir/Kenaf/Sugarcane Bagasse Fiber Reinforced Epoxy Composites

Article Preview

Abstract:

This research focuses on the sound absorption coefficient of three different natural fibers reinforced epoxy composites. The natural fibers used are coconut coir, kenaf, and sugarcane bagasse. All of these fibers were mixed with epoxy resin and hardener with a ratio of 4:1. The mixtures were then poured into a circular mold and compressed by using compression molding technique. It was left for curing for 24 hours at standard room temperature. The results were obtained using the two-microphone transfer functions impedance tube method according to ASTM E1050-12. It is found that as the fiber loading increased, the sound absorption coefficient of the composites increased. 20wt% Coconut coir epoxy composites and 20wt% kenaf fiber epoxy composites have the highest sound absorption coefficient with almost similar sound absorption of 0.078 at 5000Hz. While, 20wt% sugarcane bagasse epoxy composites have sound absorption of 0.075 at 5000Hz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

February 2017

Export:

Price:

* - Corresponding Author

[1] D. Verma, P. C. Gope, A. Shandilya, A. Gupta, M. K. Maheshwari, Coir Fibre Reinforcement and Application in Polymer composites: A Review. J. Mater. Environ. Sci. 4 (2013) 263-276.

Google Scholar

[2] J. J. Sargianis, H. I. Kim, E. Andres, J. Suhr. Sound and Vibration Damping Characteristics in Natural Material Based Sandwich Composites. Compos. Struc. 96 (2013) 538-544.

DOI: 10.1016/j.compstruct.2012.09.006

Google Scholar

[3] M. Avella, G. La Rota, E. Martuscelli, M, Raimo, P. Sadocco. G. Elegir, R. Riva Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Wheat Straw Fibre Composites: Thermal, Mechanical Properties and Biodegradation Behavior. J. Mater. Sci. 35 (2000).

DOI: 10.1023/a:1004773603516

Google Scholar

[4] D. Chen, J. Li, J. Ren. Study on Sound Absorption Property of Ramie Fiber Reinforced Poly (l-lactic acid) Composites: Morphology and Properties. Compos. Part A 41 (2010) 1012-1018.

DOI: 10.1016/j.compositesa.2010.04.007

Google Scholar

[5] Y. Zou, S. Huda, Y. Yang. Lightweight Composites from Long Wheat Straw and Polypropylene Web. Biores. Tech. 101 (2010) 2026-(2033).

DOI: 10.1016/j.biortech.2009.10.042

Google Scholar

[6] N. Reddy, Y. Yang. Novel Green Composites Using Zein as Matrix and Jute Fibers as Reinforcement. Bioma. Bioener. 35 (2011) 3496-3503.

DOI: 10.1016/j.biombioe.2011.04.044

Google Scholar

[7] T. Koizumi, N. Tsujiuchi, A. Adachi. The Development of Sound Absorbing Materials Using Natural Bamboo Fibers. Hi. Perf. Struct. Mat. 4 (2002) 157-166.

Google Scholar

[8] M. A. Ibrahim, R. W. Melik. Physical Parameters Affecting Acoustic Absorption Characteristics of Fibrous Materials. Proceed. Math. Phy. Soc. Egypt. 46 (1978) 125-130.

Google Scholar

[9] B. A. Castagnede, A. Aknine, B. Brouard, V. Tarnow. Effects of Compression on the Sound Absorption of Fibrous Materials. Appl. Acoust. 61 (2000) 173-182.

DOI: 10.1016/s0003-682x(00)00003-7

Google Scholar

[10] ASTM E41-92. Terminology Relating to Conditioning. ASTM Int., 4 (2010) 1-2.

Google Scholar

[11] ASTM E1050-12. Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System. ASTM Int., 4 (2012), 1-14.

DOI: 10.1520/e1050-19

Google Scholar

[12] K. L Pickering, M. G. Aruan Efendy, T. M. Le. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. Part A: Appl. Sci. Manufac. 1 (2015) 1-15.

Google Scholar

[13] M. H Fouladi, M. Ayub, M. J. M. Nor. Analysis of Coir Fiber Acoustical Characteristics. Appl. Acoust. 1 (2011) 35-42.

DOI: 10.1016/j.apacoust.2010.09.007

Google Scholar

[14] L. Ismail, M. I. Ghazali, S. Mahzan, A. M. Ahmad Zaidi. Sound Absorption of Arenga Pinnata Natural Fiber. World Academy Sci. Tech. 43 (2010) 804-806.

Google Scholar

[15] C. H. Huang, J. H. Lin, C. H. Lou, Y. T. Tsai. The Efficacy of Coconut Fibers on The Sound-Absorbing and Thermal-insulating Nonwoven Composite Board. Fib. Polym. 14 (2013) 1378-1385.

DOI: 10.1007/s12221-013-1378-7

Google Scholar

[16] S. Jiang, Y. Xu, H. Zhang, C. B. White, X. Yan. Seven-hole Hollow Polyester Fibers as Reinforcement in Sound Absorption Chlorinated Polyethylene Composites. Appl. Acoust. 73 (2012) 243-247.

DOI: 10.1016/j.apacoust.2011.09.006

Google Scholar

[17] E. Markiewicz, D. Paukszta, S. Borysiak. In: Acoustic and Dielectric Properties of Polypropylene-Lignocellulosic Materials Composites Polypropylene, F. Dogan., InTech, Croatia (2012) pp.193-216.

DOI: 10.14314/polimery.2009.430

Google Scholar