Internal Friction and Mechanical Strength of Hydrogenated Ti-Rich Multicomponent Glassy Alloys

Article Preview

Abstract:

The hydrogen-induced internal friction and mechanical strength of the Ti-rich Ti34Zr11Cu47Ni8 and (Ti34Zr11Cu47Ni8)98Si2 hydrogenated glassy alloys have been investigated. It is found that the tensile strength is more than 0.8 GPa at room temperature when the hydrogen content is below about 20 at% for both alloys. The frequency dependence of peak temperature of the hydrogen-induced internal friction of (Ti34Zr11Cu47Ni8)98Si2-17.3 at%H hydrogenated glassy alloys has been clarified. Activation energy and pre-exponential factor are estimated to be 0.35 eV and 1.3x10-12, respectively. Compared with these values with those of Zr40Cu49Al10Si1 hydrogenated glassy alloys which show an internal friction peak around 300 K at about 300 Hz, it is found that the activation energy is much smaller than that of the latter although the pre-exponential factor is almost the same. Considering their similar composition and different component (Al), it is suggested that the component Al of the latter glassy alloys is effective for the higher activation energy which results in the increase of the peak temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-144

Citation:

Online since:

September 2006

Export:

Price:

[1] A. Inoue: Mater. Trans. JIM Vol. 36 (1995), p.866.

Google Scholar

[2] W. L. Johnson: Mater. Sci. Forum Vol. 225-227 (1996), p.35.

Google Scholar

[3] T. Yagi, R. Oguro, R. Tamura, S. Takeuchi: Mater. Res. Soc. Symp. Proc. (MRS2000), Mater. Res. Soc. (2001) p. L11. 10. 1.

Google Scholar

[4] T. Yagi, T. Imai, R. Tamura, S. Takeuchi: Mater. Sci, Eng. Vol. 370 (2004), p.264.

Google Scholar

[5] S. Takeuchi, T. Yagi, T. Imai, R. Tamura: Mater. Sci. Eng. A Vol. 375-377 (2004), p.455.

Google Scholar

[6] H. -R. Sinning: J. Alloys Compnd. Vol. 310 (2000), p.224.

Google Scholar

[7] R. Scarfone, H. R. Sinning: J. Alloys Compnd. Vol. 310 (2000), p.229.

Google Scholar

[8] H. Mizubayashi, S. Murayama, H. Tanimoto: J. Alloys Compnd. Vol. 330-332 (2002), p.389.

Google Scholar

[9] H. Mizubayashi, Y. Ishikawa, H. Tanimoto: Mater. Trans. Vol. 43 (2002), p.2662.

Google Scholar

[10] H. Mizubayashi, Y. Ishikawa, H. Tanimoto: J. Alloys Compmd. Vol. 355 (2003), p.31.

Google Scholar

[11] H. Mizubayashi, Y. Ishikawa, H. Tanimoto: Mater. Sci, Eng. Vol. 370 (2004), p.546.

Google Scholar

[12] M. Hasegawa, S. Yamaura, H. Kato, K. Amiya, N. Nishiyama, A. Inoue: J. Alloys Compnd. Vol. 355 (2003), p.37.

Google Scholar

[13] M. Hasegawa, K. Kotani, S. Yamaura, H. Kato, I. Kodama and A. Inoue: J. Alloys and Compnd. Vol. 365 (2004), p.221.

Google Scholar

[14] M. Hasegawa, M. Takeuchi, H. Kato, S. Yamaura and A. Inoue: J. Alloys Compnd. Vol. 372 (2004), p.116.

Google Scholar

[15] M. Hasegawa, M. Takeuchi, H. Kato and A. Inoue: Acta Materia Vol. 52 (2004), p.1799.

Google Scholar

[16] M. Hasegawa, M. Takeuchi and A. Inoue: Acta Materia Vol. 53 (2005), p.5297.

Google Scholar

[17] M. Hasegawa, M. Takeuchi, D. Nagata, T. Wada, H. Kato, Y. Yamaura and A. Inoue: Maters. Sic. Eng. submitted.

Google Scholar

[18] K. Itoh and T. Fukunaga: private communications.

Google Scholar

[19] T. Takeuchi, S. Nakano, K. Soda, H. Sato, M. Hasegawa, U. Mizutani, K. Itoh, T. Fukunaga: Mater. Trans. (2005) in press.

Google Scholar

[20] T. Takeuchi, S. Nakano, K. Soda, H. Sato, M. Hasegawa, U. Mizutani, K. Itoh, T. Fukunaga: Mater. Sic. Eng. submitted.

Google Scholar