Synthesis and Electrochemical Properties of Cu-Doped LiMnPO4/C Nanorods as Cathode Materials of Lithium-Ion Batteries

Article Preview

Abstract:

LiCuxMn1-xPO4/C nanorods are successfully prepared by a simple solvothermal process followed by calcination of the precursor LiCuxMn1-xPO4 and sucrose. The effects of dopant and carbon coating on the physical and chemical characteristics of LiMnPO4 are investigated. The results show that Cu successfully entered into the lattice of LiMnPO4, and induced a decrease in the lattice parameters. A thin layer of carbon coating with an average thickness of 20 nm is formed on the surface of LiCuxMn1-xPO4 particle. We also observe that the LiCuxMn1-xPO4/C nanorods have higher electronic conductivity (5.5139×10-4S cm-1) and initial discharge capacity (87.5 mAh g-1 at 0.5C) compared with pristine LiMnPO4. Based on the results above, the developed nanocomposites could have potential applications in lithium-ion batteries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

October 2013

Export:

Price:

[1] J.C. Li, F.Q. Yang, J. Ye, Y. T. Cheng, Whisker Formation on a Thin Film Tin Lithium-Ion Battery Anode, J. Power Sources. 196 (2011) 1474-1477.

DOI: 10.1016/j.jpowsour.2010.08.116

Google Scholar

[2] J.C. Li, X.C. Xiao, F.Q. Yang, M.W. Verbrugge, Y.T. Cheng, Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction, J. Phys. Chem. C. 116 (2012) 1472-1478.

DOI: 10.1021/jp207919q

Google Scholar

[3] D. Choi, D. Wang, I-T. Bae, J. Xiao, Z. Nie, W. Wang, et al, LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode, Nano Lett. 10 (2010) 2799-2805.

DOI: 10.1021/nl1007085

Google Scholar

[4] A. Yamada, Y. Kudo, K-Y. Liu, Reaction Mechanism of the Olivine-Type Lix(Mn0.6Fe0.4)PO4 (0 <x <1) , J. Electrochem. Soc. 148 (2001) A747-A754.

Google Scholar

[5] S.L. Yang, R.G. Ma, M.J. Hu, L.J. Xi, Z.G. Lu, C. Chung, Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties, J. Mater. Chem. 22 (2012) 25402-25408.

DOI: 10.1039/c2jm34193j

Google Scholar

[6] Z. Bakenov, I. Taniguchi, Physical and electrochemical properties of LiMnPO4/C composite cathode prepared with different conductive carbons, J. Power Sources. 195 (2010) 7445-7451.

DOI: 10.1016/j.jpowsour.2010.05.023

Google Scholar

[7] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater. 1 (2002) 123-128.

DOI: 10.1038/nmat732

Google Scholar

[8] TNL. Doan, I. Taniguchi, Preparation of LiCoPO4/C nanocomposite cathode of lithium batteries with high rate performance, J. Power Sources. 196 (2011) 5679-5684

DOI: 10.1016/j.jpowsour.2011.02.039

Google Scholar

[9] K. Kim, JH. Jeong, I.J. Kim, H.S. Kim, Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4, J. Power Sources. 167 (2007) 524-528.

DOI: 10.1016/j.jpowsour.2007.01.097

Google Scholar

[10] H.S. Kim, D.W. Kam, W.S. Kim, Synthesis of the LiFePO4 by a solid-sta te reaction using organic acids as a reducing agent, Ionics. 17 (2011) 293-297.

DOI: 10.1007/s11581-011-0518-6

Google Scholar

[11] S. Yang, PY. Zavalij, M. Stanley Whittingham, Hydrothermal synthesis of lithium iron phosphate cathodes, Electrochem. Commun. 3 (2001) 505-508.

DOI: 10.1016/s1388-2481(01)00200-4

Google Scholar

[12] Y. Wang, Y. Yang, X. Hu, Y. Yang, H. Shao, Electrochemical performance of Ru-doped LiFePO4/C cathode material for lithium-ion batteries, J. Alloys Compd. 481 (2009) 590-594.

DOI: 10.1016/j.jallcom.2009.03.033

Google Scholar

[13] T. Doi, S. Yatomi, T. Kida, S. Okada, J. Yamaki, Liquid-Phase Synthesis of Uniformly Nanosized LiMnPO4 Particles and Their Electrochemical Properties for Lithium-Ion Batteries, Cryst. Growth Des. 9 (2009) 4990-4992.

DOI: 10.1021/cg900452a

Google Scholar

[14] Y. Mishima, T. Hojo, T. Nishio, H. Sadamura, N. Oyama, C. Moriyoshi, et al. MEM Charge Density Study of Olivine LiMPO4 and MPO4 (M = Mn, Fe) as Cathode Materials for Lithium-Ion Batteries, J. Phys Chem C. 117 (2013) 2608-2615.

DOI: 10.1021/jp310075w

Google Scholar

[15] H.S. Fang, E.R. Dai, B. Yang, Y. C. Yao, W.H. Ma, LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries, 204 (2012) 193-196.

DOI: 10.1016/j.jpowsour.2011.12.046

Google Scholar

[16] I. Bilecka, A. Hintennach, MD. Rossell, D. Xie, P. Novak, M. Niederberger, Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance, J. Mater. Chem. 21 (2011) 5881-5890.

DOI: 10.1039/c0jm03476b

Google Scholar

[17] L.L. Ge, C.X. Han, L.P. Ni, J. Zhang, Y.L. Tao, Q.B. Yu, et al. Synthesis and electrochemical properties of Li3V2(PO4)3/C with one-dimensional(1D) nanorod structure for cathode materials of lithium-ion batteries, Solid State Sci. 14 (2012) 864-869.

DOI: 10.1016/j.solidstatesciences.2012.04.024

Google Scholar

[18] P. Ramesh kumar, M. Venkateswarlu, M. Misra, A. K. Mohanty, N. Satyanarayana, Carbon Coated LiMnPO4 Nanorods for Lithium Batteries, J Electrochem. Soc. 158 (2011) A227-A230.

DOI: 10.1149/1.3527059

Google Scholar

[19] S.H. Choi, J. Kim, Y.S. Yoon, Fabrication and characterization of a LiCoO2 battery–supercapacitor combination for a high-pulse power system, J. Power Sources. 138 (2004) 360-363.

DOI: 10.1016/j.jpowsour.2004.06.050

Google Scholar

[20] Y.R. Zhang, Y.Y. Zhao, L.J. Deng, Enhance d electrochemical properties of LiMnPO4 /C via doping with Cu, Ionics. 18 (2012) 573-578.

DOI: 10.1007/s11581-011-0655-y

Google Scholar