Wear Behaviour of Coated Cemented Carbide Inserts in an Oxygen-Free Atmosphere when Machining Ti-6Al-4V

Article Preview

Abstract:

The machining of difficult-to-cut materials such as titanium plays a key role in several industries such as aerospace or medical. Approaches to overcome many difficulties when machining these materials can be an appropriate coating system for cemented carbide cutting tools. However, the atmosphere under which machining takes place, influencing the chemical tool wear, has not been taken into consideration. This work examines the tribochemical wear resistance of TiN, TiAlN and CrAlN coated carbide tools under different atmospheric conditions when cutting Ti6Al-4V. Air, technically pure argon and silane-doped argon is used to determine the influence of different oxygen levels on the wear behaviour of the tools. It has been found that oxidation of tools and tool coatings plays a significant role in tool wear when dry cutting titanium. Best results were generated using CrAlN and uncoated inserts where an increase in tool life up 50 % can be achieved when cutting in oxygen levels corresponding to extreme high vacuum (XHV) adequate atmospheres by using silane-doped argon. The benefits of XHV adequate atmospheres also have an effect on TiAlN-and TiN based coatings, but the chemical interaction of Ti element in the coating with the workpiece material, which presumably reduces wear resistance of cutting tools, cannot be outweighted or equalised by applying oxygen free atmospheres.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

28-35

Citation:

Online since:

October 2020

Export:

Price:

* - Corresponding Author

[1] B. Denkena, J.H. Dege, M. Groppe, T. Grove, Zerspanbarkeit von β-Titanlegierungen. VDI-Z Special Werkzeuge (2010) 24–27.

Google Scholar

[2] M.C. Shaw, Metal Cutting Principles, Oxford University Press (2005).

Google Scholar

[3] P. Müller-Hummel, M. Lahres, Quantitive measurement of temperatures on diamond-coated tools during machining, International Journal of Diamond and Related Materials 4 (1995) 1216-1221.

DOI: 10.1016/0925-9635(95)00299-5

Google Scholar

[4] Y.C. Chim, X.Z. Ding, X.T. Zeng, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films 517 (2009) 4845-4849.

DOI: 10.1016/j.tsf.2009.03.038

Google Scholar

[5] X.T. Zeng, S. Zhang, L.S. Tan, Multilayered (Ti, Al) ceramic coating for high-speed machining applications, Journal of Vacuum Science & Technology A 19 (2001) 1919 – (1922).

DOI: 10.1116/1.1342868

Google Scholar

[6] H. Scheerer, H. Hoche, E. Broszeit, B. Schramm, E. Abele, C. Berger, Effects of the chromium aluminum content on the tribology in dry machining using (Cr,Al)N coated tools, Surface and Coatings Technology 200 (2005) 203-207.

DOI: 10.1016/j.surfcoat.2005.02.112

Google Scholar

[7] Z. Liu, Q. An, J. Xu, M. Chen, S. Han, Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions, Wear 305 (2013) 249-259.

DOI: 10.1016/j.wear.2013.02.001

Google Scholar

[8] R.Pflumm, A. Donchev, S. Mayer, H. Clemens, M.Schütze, High-temperature oxidation behaviour of multi-phase Mo-containing γ-TiAl-based alloys, Intermetallics 53(2014) 45-55.

DOI: 10.1016/j.intermet.2014.04.010

Google Scholar

[9] M. N. Mungole, N. Singh, G. N. Mathur, Oxidation behaviour of Ti6Al4V titanium alloy in oxygen, Materials Science and Technology (18) (2002) 111-114.

DOI: 10.1179/026708301125000302

Google Scholar

[10] D. B. Lee, I. Pohrelyuk, O. Yaskiv, J. C. Lee, Gas nitriding and subsequent oxidation of Ti-6Al-4V alloys, Nanoscale research letters (7) (2012) 21.

DOI: 10.1186/1556-276x-7-21

Google Scholar

[11] B. Denkena, M.-A. Dittrich, S. Jacob, Energy Efficiency in Machining of Aircraft Components, Procedia CIRP 48 (2016) 479-482.

DOI: 10.1016/j.procir.2016.03.155

Google Scholar

[12] B. Sefer, Environment related surface phenomena and their influence on properties of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo, PhD Thesis Barcelona (2016).

DOI: 10.3139/146.030019

Google Scholar

[13] Dong, W. Yu, Q. Cai, L. Cheng, J. Shi, High-Temperature Oxidation Kinetics and Behaviour of Ti–6Al–4V Alloy, Oxidation of Metals (88) (2017) 719-732.

DOI: 10.1007/s11085-017-9770-0

Google Scholar

[14] B. Denkena, P. Helmecke, S. Jacob, J. Kiese, Energieeffiziente Titanzerspanung durch Spänerecycling, Productivity Management 21 (1) (2016) 25-28.

Google Scholar

[15] P. Mercer, I. M. Hutchings, The influence of atmospheric composition on the abrasive wear of titanium and Ti-6Al-4V, Wear (124) (1988) 165–176.

DOI: 10.1016/0043-1648(88)90242-6

Google Scholar

[16] D. Kammermeier, Charakterisierung von binären und ternären Hartstoffschichten anhand von Simulations- und Zerspanuntersuchungen, PhD Thesis, Aachen (1992).

Google Scholar

[17] F. Klocke, Fertigungsverfahren 1, 9. Auflage, Springer Verlag, Berlin, (2018).

Google Scholar

[18] Baptista, F. J. G. Silva, J. Porteiro, J. L. Miguez, G. Pinto, L. Fernandes, On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications, Procedia Manufacturing 17 (2018), 746-757.

DOI: 10.1016/j.promfg.2018.10.125

Google Scholar