Comparative Measurements of the Thermal Properties of Solid Materials on a New Device and Using a New Non-Stationary Method

Article Preview

Abstract:

The aim of the publication is the comparative measurements of changes in temperature of the significant material coefficient - thermal conductivity for newly developed construction materials (lightweight concrete). The aim is met by using a newly proposed method and a newly developed device by the approximation modelling of the temperature dependence of the thermal conductivity coefficient of the new composites and also the interpretation of measurement results in the context of optimally desired characteristics of thermal insulation concrete. Construction materials for residential buildings should have good thermal insulation properties, i.e. relatively low coefficients of thermal conductivity. With regard to the relatively most important property of concrete – strength, however, the reduction in thermal conductivity of concrete is limited. Thermal conductivity of concrete can be reduced very effectively by increasing its porosity; on the other hand, by increasing the porosity, the strength of concrete is significantly reduced. The publication, therefore, compares the results of temperature dependences of thermal conductivity for three newly designed concretes, namely in the context of their compressive strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-72

Citation:

Online since:

April 2016

Export:

Price:

[1] O. Sengul, S. Azizi, F. Karaosmanoglu and M. A. Tasdemir: Energy Build. Vol. 43 (2011), p.671.

Google Scholar

[2] A. S. Gandage, V.V. Rao, M. V. N Sivakumar, A. Vasan, M. Venu and A. B. Yaswanth, Procedia Soc. Behav. Sci. Vol. 104 (2013), p.188.

DOI: 10.1016/j.sbspro.2013.11.111

Google Scholar

[3] Y. Xu, L. Jiang, J. Xu and Y. Li: Constr. Build. Mater. Vol. 27 (2012), p.32.

Google Scholar

[4] A. B. Fraj, M. Kismi and P. Mounanga. Constr. Build. Mater. Vol. 24 (2010), p.1069.

Google Scholar

[5] V. Václavík, T. Dvorský, V. Dirner, J. Daxner and M. Šťastný: Teh. Vjesn. Vol. 19 (2010), p.665.

Google Scholar

[6] R. Ji, Z. Zhang, L. Liu and X. Wang:  Build. Environ. Vol. 80 (2014), p.221.

Google Scholar

[7] T. S. Yun, Y. J Jeong, T. S. Han and K. S. Youm: Energy Build. Vol. 61(2013), p.125.

Google Scholar

[8] H. Oktay, R. Yumrutaş and A. Akpolat: Constr. Build. Mater. Vol. 96 (2015), p.217.

Google Scholar

[9] K. H. Kim, S. E. Jeon, J. K. Kim and S. Yang: Cem. Concr. Res. Vol. 33 (2003), p.363.

Google Scholar

[10] M. I. Khan: Build. Environ. Vol. 37 (2002), p.607.

Google Scholar

[11] P. Morabito: High Pressures, Vol. 21 (1989), pp.51-59.

Google Scholar

[12] O. Ünal, T. Uygunoğlu and A. Yildiz: Build. Environ. Vol. 42 (2007), p.584.

Google Scholar

[13] Ziman, J. M.: Principles of the theory of solids. Cambridge, Univ. Press, (1972).

Google Scholar

[14] M. Bailyn, A Survey of thermodynamics, American Institute of Physics, New York, (1994).

Google Scholar

[15] VSB-TU OSTRAVA. The device for identifying the physical properties of solid materials. Inventors: M. Kušnerová, J. Valíček, V. Vaclavik, J. Daxner. Praha: Industrial Property Office ČR: UV 23861, U1, G01N 25/18 (2006. 01), G01N 27/18 (2006. 01), Owner: VSB-TUO, Ostrava, CZ a D&DAXNER Technology, s. r. o, Ostrava, CZ, (2012).

DOI: 10.17973/mmsj.2023_03_2022113

Google Scholar

[16] VSB-TU Ostrava. Equipment for the identification of physical properties of solid materials. Inventors: M. Kušnerová, J. Valíček, V. Vaclavik, J. Daxner. Utility model CZ 23861 U1. 24. 05. 2012, Czech Republic, (2012).

Google Scholar

[17] M. Kušnerová, J. Valíček and M. Harničárová: Gradevinar Vol. 66 (2014), p.899.

Google Scholar

[18] L. Gola, V. Václavík, J. Valíček, M. Harničárová, M. Kušnerová and T. Dvorský, Drainage concrete based on cement composite and industrial waste, in: Mechanical and Materials Engineering of Modern Structure and Component Design / Springer International Publishing, (2015).

DOI: 10.1007/978-3-319-19443-1_12

Google Scholar