Lithium Diffusion in Li-Rich and Li-Poor Amorphous Lithium Niobate

Article Preview

Abstract:

The diffusion of lithium in amorphous lithium niobate layers is studied as a function of temperature between 293 and 423 K. About 800 nm thick amorphous 7LiNbO3 layers were deposited on sapphire substrates by ion-beam sputtering. As a tracer source about 20 nm thin 6LiNbO3 layers were sputtered on top. Isotope depth profile analysis is done by secondary ion mass spectrometry. Compared are amorphous samples which show a ratio of Li : Nb < 1 (Li-poor) and of Li : Nb > 1 (Li-rich) close to the stoichiometric composition of Li : Nb = 1 for crystalline LiNbO3. The results reveal that the diffusivities of both types of samples obey the Arrhenius law with an activation enthalpy of 0.70 eV and 0.83 eV, respectively. The diffusivities of the sample containing a higher amount of Li are lower by a factor of about two to ten. This demonstrates that variation of the Li content in amorphous samples over the stability range of the crystalline LiNbO3 phase has only a modest influence on diffusivities and activation enthalpies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

May 2015

Export:

Price:

[1] T. Volk, M. Wöhlecke, Lithium Niobate, Springer, Berlin, (2010).

Google Scholar

[2] K. K. Wong, Properties of Lithium Niobate, Inspec, London, (2002).

Google Scholar

[3] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Phys. Chem. Chem. Phys. 14 (2012) 2427.

DOI: 10.1039/c2cp23548j

Google Scholar

[4] J. Rahn, L. Dörrer, B. Ruprecht, P, Heitjans, H. Schmidt, Defect-Diffus. Forum 333 (2013) 33.

Google Scholar

[5] E. Hüger, J. Rahn, J. Stahn, T. Geue, H. Schmidt, Phys. Rev. B 85 (2012) 214102.

Google Scholar

[6] E. Hüger, J. Rahn, J. Stahn, T. Geue, P. Heitjans, H. Schmidt, Phys. Chem. Chem. Phys. 16 (2014) 8670.

DOI: 10.1039/c3cp54939a

Google Scholar

[7] M. Masoud, P. Heitjans, Defect-Diffus. Forum 237-240 (2005) 1016.

Google Scholar

[8] B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans, Z. Phys. Chem. 226 (2012) 431.

Google Scholar

[9] N. Kamaya et al., Nat. Mater. 10 (2011) 682.

Google Scholar

[10] M. Ogawa, R. Kanda, K. Yoshida, T. Uemura, K. Harada, J. Power Sources 205 (2012) 487.

Google Scholar

[11] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening, Faraday Discuss. 134 (2007) 67.

DOI: 10.1039/b602887j

Google Scholar

[12] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt, Z. Phys. Chem. 226 (2012) 439.

DOI: 10.1524/zpch.2012.0214

Google Scholar

[13] V. Joshkin, K. Dovidenko, S. Oktyabrsky, D. Saulys, T. Kuech, L. McCaughan, J. Cryst. Growth, 259 (2003) 273.

DOI: 10.1016/j.jcrysgro.2003.08.001

Google Scholar

[14] H. Schmidt et al., J. Appl. Phys. 93 (2003) 907.

Google Scholar

[15] H. Schmidt, U. Geckle, M. Bruns, Phys. Rev. B. 74 (2006) 045203.

Google Scholar

[16] E. Hüger, U. Tietze, D. Lott, H. Bracht, E. E. Haller, D. Bougeard, H. Schmidt, Appl. Phys. Lett. 93 (2008) 162104.

DOI: 10.1063/1.3002294

Google Scholar

[17] H. A. Bracht, H. H. Silvestri, E. E. Haller, Solid State Commun. 133 (2005) 727.

Google Scholar

[18] J. Crank, The Mathematics of Diffusion, Oxford University Press, Oxford, (1975).

Google Scholar

[19] A. Weidenfelder, J. Shi, P. Fielitz, G. Borchardt, K. D. Becker, H. Fritze, Solid State Ionics 225 (2012) 26.

DOI: 10.1016/j.ssi.2012.02.026

Google Scholar