Formation of Vanadium Oxide (V-O System) Graded Compounds under Strong Gravitational Field

Article Preview

Abstract:

Strong gravitational field induces sedimentation of atoms due to the different body forces acting on respective atoms, and gives a tool for controlling elemental compositions in condensed matter. Vanadium oxide (V-O system) has large contrast in phases like VO, V2O3, VO2, V2O5 etc., and shows the respective interesting diverse electrical and optical properties. We performed a strong-gravity experiment (0.397106G at 400°C for 24 hours) on a V2O5 polycrystal using the high temperature ultracentrifuge to examine the composition change and further the structure change. It was found by the XRD and Raman scattering method that VO2 and V2O3 phases appeared and the amounts were increased, while one of the V2O5 phase decreased gradually along with the increasing gravitational field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-170

Citation:

Online since:

May 2015

Export:

Price:

* - Corresponding Author

[1] T. Mashimo, S. Okazaki, S. Shibazaki, Ultracentrifuge apparatus to generate a strong acceleration field of over 1, 000, 000 g at a high temperature in condensed matter, Rev. Sci. Instrum. 67 (1996) 3170.

DOI: 10.1063/1.1147441

Google Scholar

[2] T. Mashimo, X. Huang, T. Osakabe, M. Ono, M. Nishihara, H. Ihara, M. Sueyoshi, K. Shibasaki, S. Shibasaki, N. Mori, Advanced high-temperature ultracentrifuge apparatus for mega-gravity materials science, Rev. Sci. Instrum., 74(1) (2003) 160-163.

DOI: 10.1063/1.1527718

Google Scholar

[3] T. Mashimo, Gravity-induced diffusion: Sedimentation of atoms in condensed matter, Diffusion Study in Japan. (2006) 195-208.

Google Scholar

[4] T. Mashimo, T. Ikeda, I. Minato, Atomic-scale graded structure formed by sedimentation of substitutional atoms in a Bi–Sb alloy, J. Appl. Phys. 90 (2001) 741-744.

DOI: 10.1063/1.1381543

Google Scholar

[5] T. Mashimo, M. Onob, T. Kinoshitab, X. Huanga, T. Osakabea, H. Yasuoka, Sedimentation of substitutional atoms and phase change in an In-Pb alloy under an ultrastrong gravitational field, Philos. Mag. Let. 83 (11) (2003) 687-690.

DOI: 10.1080/09500830310001614531

Google Scholar

[6] X. Huang, M. Ono, H. Ueno, Y. Iguchi, T. Tomita, S. Okayasu, T, Mashimo, Formation of atomic-scale graded structure in Se-Te semiconductor under strong gravitational field, J. Appl. Phys. 101 (2007) 113502.

DOI: 10.1063/1.2736334

Google Scholar

[7] T. Mashimo, Y. Iguchi, R. Bagum,T. Sano, S. Takeda, S. Kimura, O. Sakata, M. Ono, S. Okayasu, T. Tsurui, K. Hiraga, Formation of amorphous graded structure in Bi3Pb7 intermetallic compounds under strong gravitational field, Defect and Diffusion Forum, 289-292 (2009).

DOI: 10.4028/www.scientific.net/ddf.289-292.357

Google Scholar

[8] R. Bagum, A. Yoshiasa, S. Okayasu, Y. Iguchi, M. Ono, M. Okube, T. Mashimo, Effect of strong gravity on Y1Ba2Cu3O7−x superconductor, J. Appl. Phys. 108 (2010) 053517.

DOI: 10.1063/1.3475519

Google Scholar

[9] S.H. Lee, H.M. Cheong, M.J. Seong, P. Liu, C.E. Tracy, A. Mascarenhas, J. R. Pitts, S.K. Deb, Raman spectroscopic studies of amorphous vanadium oxide thin films, Solid State Ionics 165 (2003) 111–116.

DOI: 10.1016/j.ssi.2003.08.022

Google Scholar

[10] K. Takahashi, S.J. Limmer, Y. Wang, G. Cao, Synthesis and Electrochemical Properties of Single-Crystal V2O5 Nanorod Arrays by Template-Based Electrodeposition, J. Phys. Chem. B. 108 (2004) 9795 – 9800.

DOI: 10.1021/jp0491820

Google Scholar

[11] M. Abbate, H. Pen, M.T. Czyiyk, F.M.F. de Groat, J.C. Fuggleav, Y.J. Mab, C.T. Chenb, F. Setteb, A. Fujimori, Y. Uedad, K. Kosugee, Soft X-ray absorption spectroscopy of vanadium oxides, J. Electron Spectrosc. Relat. Phenom. 62 (1993) 185-195.

DOI: 10.1016/0368-2048(93)80014-d

Google Scholar

[12] M.M. Qazilbash, A.A. Schafgans, K.S. Burch, S.J. Yun, B.G. Chae, B.J. Kim, H.T. Kim, D.N. Basov, Electrodynamics of the vanadium oxides VO2 and V2O3, Phys. Rev. B. 77 (2008) 115121.

Google Scholar

[13] Y. Chen, G. Yang, Z. Zhang, X. Yang, W. Hou, J.J. Zhu, Polyaniline-intercalated layered vanadium oxide nanocomposites—One-pot hydrothermal synthesis and application in lithium battery, Nanoscale. 2 (2010) 2131–2138.

DOI: 10.1039/c0nr00246a

Google Scholar

[14] C. Piccirillo, R. Binions, I.P. Parkin, Synthesis and functional properties of vanadium oxides: V2O3, VO2, and V2O5 deposited on glass by aerosol-assisted CVD, Chem. Vap. Deposition. 13 (2007) 145–151.

DOI: 10.1002/cvde.200606540

Google Scholar

[15] B.L. Hurley, S. Qiu, R.G. Buchheit, Raman Spectroscopy Characterization of Aqueous Vanadate Species Interaction with Aluminum Alloy 2024-T3 Surfaces, J. Electrochem. Society, 158 (5) (2011) 125-131.

DOI: 10.1149/1.3562557

Google Scholar

[16] Y. Wang, H.J. Zhang, A.S. Admar, J. Luo, C.C. Wong, A. Borgnaa, J. Lin, Improved cyclability of lithium-ion battery anode using encapsulated V2O3 nanostructures in well-graphitized carbon fiber, RSC Advances, 2 (2012) 5748–5753.

DOI: 10.1039/c2ra20472j

Google Scholar