Numerical Evaluation of Effective Material Constants for CNT-Based Polymeric Nanocomposites

Article Preview

Abstract:

The effective material constants for CNT-based polymeric composites are studied. The analysis is based on the elasticity theory involving a spatial square representative volume element and the finite element method. The transversally isotropic body having aligned and uniformly distributed long carbon nanotubes is assumed. The perfect bonding between the carbon nanotubes and the matrix are considered. For such a material the five elastic material constants is needed to completely describe the elastic behavior. Related to the calculated material constants, the results are given and compared with the other models presented in the literature. Generally, the increase of the effective material constants normalized by the matrix modulus is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

November 2013

Export:

Price:

* - Corresponding Author

[1] D. Qian, G.J. Wagner, W.K. Liu, M. -F. Yu and R.S. Ruoff: Appl. Mech. Rev. Vol. 55 (2002), p.495.

Google Scholar

[2] E. T. Thostensona, Z. Ren and T. -W. Chou: Compos. Sci. Technol. Vol. 61 (2001), p.1899.

Google Scholar

[3] E.T. Thostenson, C. Li and T.W. Chou: Compos. Sci. Technol. Vol. 65 (2005), p.491.

Google Scholar

[4] D. Srivastava, C. Wie and K. Chou, Appl. Mech. Rev. Vol. 56 (2003), p.215.

Google Scholar

[5] A. Muc: Mater. Design. Vol. 31 (2010), p.1671.

Google Scholar

[6] H. Hu, L. Onyebueke and A. Abatan: J. Minerals Mater. Characterization Eng., Vol. 9 (2010), p.275.

Google Scholar

[7] M. M. Shokrieh and R. Rafiee:, Mech. Compos. Mater. Vol. 46 (2010), p.155.

Google Scholar

[8] M. Chwał, P. Kędziora and M. Barski: Key Eng. Mater. Vol. 542 (2013), p.29.

Google Scholar

[9] G.M. Odegard, T.S. Gates, K.E. Wise, C. Park and E.J. Siochi: Compos. Sci. Technol. Vol. 63 (2003), p.1671.

Google Scholar

[10] B. Ashrafi and P. Hubert: Compos. Sci. Technol. Vol. 66 (2006), p.387.

Google Scholar

[11] Y.J. Liu and X.L. Chen: Mech. Mater. Vol. 35 (2003), p.69.

Google Scholar

[12] X.L. Chen and Y.J. Liu: Comput. Mater. Sci. Vol. 29 (2004), p.1.

Google Scholar

[13] A. Hernández-Pérez and F. Avilés:, Comput. Mater. Sci. Vol. 47 (2010), p.926.

Google Scholar

[14] R.B. Pipes and P. Hubert: Compos. Sci. and Technol. Vol. 62 (2002), p.419.

Google Scholar

[15] V.N. Popov, V.E. Van Doren and M. Balkanski: Sol. State Commun. Vol. 114 (2000), p.395.

Google Scholar

[16] Z. Hashin and B.W. Rosen: J. Appl. Mech. Vol. 31 (1964), p.223.

Google Scholar

[17] K.I. Tserpes, P. Papanicos, G. Labeas and S.G. Pantelakis: Theor. Appl Fract. Mech. Vol. 49 (2008), p.51.

Google Scholar

[18] S.J.V. Frankland, V.M. Harik, G.M. Odegard, D.W. Brenner and T.S. Gates: Compos. Sci. Technol. Vol. 63 (2003), p.1655.

Google Scholar