Mechanical Properties of AISI 316L Austenitic Stainless Steels Welded by GTAW

Article Preview

Abstract:

In this study, AISI 316 L types of austenitic stainless steels are welded by GTAW (gas tungsten arc welding) using 430L and 2209 filler metals, respectively. Mechanical properties of 316L austenitic stainless steel weldments, such as tensile properties, hardness and impact properties are determined. GTA weld microstructures are presented by optical microscopy with 1000X magnifications of weld metal region. The values obtained for ultimate tensile strength, yield strength and percentage of elongation for the welded joints are compared to the data obtained. From this investigation, the result shows that the yield, tensile strength and impact energy values of 316L stainless steels welded by GTAW using 2209 filler metal is superior compared to 430L filler metal.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-57

Citation:

Online since:

November 2013

Export:

Price:

[1] C. Odabas: Paslanmaz Celikler, Temel Ozellikleri, Kullanum Alanlari, Kaynak Yontemleri, Askaynak-Istanbul, (2002).

Google Scholar

[2] W.F. Smith: Paslanmaz Celikler, Muhendislik Alasimlarinin Yapive Ozellikleri, Bolum 5, Clit 1., Transl. by: Erdogan, M., Ankara, (2000), pp.169-214.

Google Scholar

[3] Y.C. Lin and P.Y. Chen: Effect of preheating on the Residual Stress in Type 304 Stainless Steel Weldment, Journal of Materials Processing Technology, 63 (1997), pp.797-801.

DOI: 10.1016/s0924-0136(96)02727-6

Google Scholar

[4] S.A. David and J. Vitek: Correlation Between Solidification Parameters and Weld Microstructures, International Materials Review, 34 (1989), pp.213-245.

DOI: 10.1179/imr.1989.34.1.213

Google Scholar

[5] S. Kou and Y. Le: Welding Parameter and the Grain Structure of Weld Metals- A Thermodynamic Consideration, Metallurigical Transcation, 19(A)(1985), p.1075.

Google Scholar

[6] J.J. Smith and R.A. Farrar: Influence of Microstructure and Composition on Mechanical Properties of some AISI 300 Series Weld Metals, International Materials Review, 38 (1993), pp.25-51.

DOI: 10.1179/imr.1993.38.1.25

Google Scholar

[7] S. Polgary: Mechanical properties of Stainless Steel Weld Metal at Elevated Temperature with Special Regard to the Influence of Ferrite, ESAB Tech. Report No. 59A (1982), p.83001.

Google Scholar

[8] G.P. Halada: Electochemical and Surface Analytical Studies of the Interaction of Nitrogen with Key Alloying Elements in Stainless Steel, Corrosion'95, NACE, Orlando, FL, Paper 95531.

Google Scholar

[9] E. Zumelzu: Repairing Tungsten Filaments Through Microwelding, Weld Journal, AWS, 70 (1991), pp.65-67.

Google Scholar

[10] J.A. Brooks: On the Origin of Ferrite Morphologies of Primary Ferrite Solidified Stainless Steel Welds, Trends in Welding Research, ASM International, (1993).

Google Scholar

[11] E. Zumelzu and O. Ojeda: Study on the Mechanical Performance and Intergranular Corrosion of AISI 304 Stainless Steel Welded Joints, Proceedings III National Congress of Mechanical Engineering, Universidad De Concepcion, Volume 2, (1988), pp.1-5.

Google Scholar

[12] G. Lothongkum, E. Vijanit and P. Bhandhubanyong: Study on the effects of pulsed TIG welding parameters on delta-ferrite content, shape factor and bead quality in orbital welding of AISI 316L stainless steel plate. J . Mater Process Technol, 110(2) (2001).

DOI: 10.1016/s0924-0136(00)00875-x

Google Scholar

[13] P.J. Modenesi, E.R. Apolinario and I.M. Pereira: TIG welding with single component fluxes. J Mater Process Technol, 99(2000), pp.260-265.

DOI: 10.1016/s0924-0136(99)00435-5

Google Scholar

[14] G.K. Hicken: Gas tungsten arc welding, Vol. 6. ASM Handbook. (1993), pp.190-193.

Google Scholar

[15] A.D. Althouse, C.H. Turnquist, W.A. Bowditch and K.E. Bowditch: Gas tungsten arc welding, Modern Welding, The Good heart-Willcox company Inc, (1992), pp.327-328.

Google Scholar

[16] M.T. Liao and P.Y. Chen: The Effect of Shielding –Gas Compositions on the Microstructure and Mechanical Properties of Stainless Steel Weldments, Materials Chemistry and Physics, 55(1997), pp.145-151.

DOI: 10.1016/s0254-0584(98)00134-5

Google Scholar

[17] E. Zumelzu, J. Sepulveda and M. Ibarra: Influence of Microstructure on the Mechanical Behaviour of Welded 316L SS Joints, Journal of Materials Processing Technology 94 (1999), pp.36-40.

DOI: 10.1016/s0924-0136(98)00450-6

Google Scholar

[18] Rafal M. Molak, Krystian Paradowski, Tomasz Brynk, Lukasz Ciupinski, Zbigniew Pakiela, Krsysztof J. Kurzdlowski: Measurement of Mechanical Properties in a 316L Stainless Steel Welded Joint, International Journal of Pressure Vessels and Piping, 86 (2009).

DOI: 10.1016/j.ijpvp.2008.11.002

Google Scholar

[19] M. Dadfar, M.H. Fathi, Karimzadeh, M.R. Dadfar and A. Sattchi: Effect of TIG Welding on corrosion behaviour of 316L Stainless Steel, Materials Letters, 61 (2007), pp.2343-2346.

DOI: 10.1016/j.matlet.2006.09.008

Google Scholar

[20] A.M. EI-Batahgy: Effect of Lazer Welding Parameters on Fusion Zone Shape and Solidification Structure of Austenitic Stainless Steels, Materials Letters, 32(1997), pp.155-163.

DOI: 10.1016/s0167-577x(97)00023-2

Google Scholar

[21] K. Tsuchiya, H. Kawamura and G. Kalinin: Re-weldability Tests of Irradiated Austenitic Stainless Steel by a TIG Welding Method, Journal of Nuclear Materials, 283(2000), pp.1210-1214.

DOI: 10.1016/s0022-3115(00)00153-7

Google Scholar

[22] M. Sireesha, S.K. Albert, V. Shankar and S. Sundaresan: A comparative Evaluation of Welding Consumables for Disimilar Welds Between 316LN Austenitic Stainless Steel and Alloy 800, Journal of Nuclear Materials, 279 (2000), pp.65-76.

DOI: 10.1016/s0022-3115(99)00275-5

Google Scholar