Effects of Nutritional Conditions on the Stable Carbon and Nitrogen Isotope of Microalgae

Article Preview

Abstract:

Carbon and nitrogen stable isotopes were studied among different groups and species of marine phytoplankton on the aspect of growth phase and nutrient conditions. Three investigated algal species which represent the Chlorophyceae, Dinophyceae and Desmokontae classes were grown in batch monocultures and analysed for δ13C and δ15N in both exponential and stationary phase. For all the cultured species, δ13C signatures range from 24.77 (A.carterae) to 17.10 (P. micans) as well as δ15N range from-15.66(P. helgolandica) to 14.40(P. helgolandica).These three species (Platymonas helgolandica var. tsingtaoensis, Amphidinium carterae Hulburt and Prorocentrum micans) were also grown under nutrient sufficient and nitrogen or phosphorus deficient conditions. Nitrogen limitation resulted in a more negative δ13C signature, whereas no effect could be observed during phosphorus limitation compared to nutrient sufficient conditions. But nitrogen and phosphorus limitation resulted in a more positive δ15N signature. The results show that the carbon and nitrogen isotopic signature of phytoplankton may be differ among different phytoplankton species, between exponential and stationary phase, as well as between nutrient treatments.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 765-767)

Pages:

2894-2898

Citation:

Online since:

September 2013

Export:

Price:

[1] M. A. Altabet, Nitrogen and carbon isotopic tracers of the source and transformation of particles in the deep sea,. In: Ittekkot, V., Schafer, P., Honjo, S., Depetris, P.J. (Eds. ), Particle Flux in the Ocean, Wiley, New York, pp.155-181, (1996).

Google Scholar

[2] B. Fry, Stable Isotope Ecology,. Springer, New York, p.308, (2007).

Google Scholar

[3] J. Faganeli, N. Ogrinc and N. Kovac, Carbon and nitrogen isotope composition of particulate organic matter in relation to mucilage formation in the northern Adriatic Sea, Marine Chemistry, vol. 114, pp.102-109, (2009).

DOI: 10.1016/j.marchem.2009.04.005

Google Scholar

[4] N. E. Ostrom, S. A . Macko, D . Deibel, and R. J. Thompson, Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a costal cold ocean environment, Geochim. Cosmochim. Acta, vol. 61, pp.2929-2942, (1997).

DOI: 10.1016/s0016-7037(97)00131-2

Google Scholar

[5] M. J. Vander Zanden and J. B. Rasmussen, Variation in d15N and d13C trophic fractionation: implications for aquatic food web studies, Limnol. Oceanogr, Vol. 46, pp . 2061-2066, (2001).

DOI: 10.4319/lo.2001.46.8.2061

Google Scholar

[6] C. Thierry, Use of carbon and nitrogen stable isotope ratios to assess the effects of environmental contaminants on aquatic food webs, Environmental Pollution, vol. 141, pp.54-59, (2006).

DOI: 10.1016/j.envpol.2005.08.029

Google Scholar

[7] D. M. Post, Using stable isotopes to estimate trophic position: models methods, and assumptions, Ecology, vol. 83, pp.703-718, (2002).

DOI: 10.1890/0012-9658(2002)083[0703:usitet]2.0.co;2

Google Scholar

[8] H.M. James, M. L. William, C. Kendall and C. M. Claire, Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur, Oikos, vol. 102, pp.378-390, (2003).

DOI: 10.1034/j.1600-0706.2003.12098.x

Google Scholar

[9] B. Andreas, L. Elin and G. Edna, Carbon isotope signature variability among cultured microalgae: Influence of species, nutrients and growth, Journal of Experimental Marine Biology and Ecology, vol. 372, pp.98-105, (2009).

DOI: 10.1016/j.jembe.2009.02.013

Google Scholar

[10] H. T. S. Boschker and J. J. Middelburg, Stable isotopes and biomarkers in microbial ecology, FEMS Microbiol. Ecol., vol. 40, pp.85-95, (2002).

DOI: 10.1111/j.1574-6941.2002.tb00940.x

Google Scholar

[11] K. Vuorio, M. Meili and J. Sarvala, Taxon-specific variation in the stable isotopic signatures (d13C and d15N) of lake phytoplankton, Freshw. Biol., vol. 51, pp.807-822, (2006).

DOI: 10.1111/j.1365-2427.2006.01529.x

Google Scholar

[12] B. E. van Dongen, S. Schouten and J.S.S. Damsté, Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants, Mar. Ecol. Prog. Ser, vol. 232, pp.83-92, (2002).

DOI: 10.3354/meps232083

Google Scholar

[13] H. Limén and E. Ólafsson, Ostracod species-specific utilisation of sediment detritus and newly settled cyanobacteria, Aphanizomenon sp., in the Baltic Sea: evidence from stable carbon isotopes, Mar. Biol., vol. 140, pp.733-738, (2002).

DOI: 10.1007/s00227-001-0739-8

Google Scholar

[14] M. A. Altabet, Nitrogen isotopic evidence for micronutrient control of fractional NO3- utilization in the equatorial Pacific, Limnology and Oceanography, vol. 46, No. 2, pp.368-380, (2001).

DOI: 10.4319/lo.2001.46.2.0368

Google Scholar

[15] W. Satoshi, K. Masashi and F. Masaaki, Nitrogen stable isotope ratio in the manila clam, Ruditapes philippinarum, reflects eutrophication levels in tidal flats, Marine Pollution Bulletin, vol. 58, pp.1447-1453, (2009).

DOI: 10.1016/j.marpolbul.2009.06.018

Google Scholar

[16] P. G. Falkowski, "Species variability in the fractionation of 13C and 12C by marine phytoplankton, J. Plankton Res, vol. 13, p.21–28, (1991).

Google Scholar

[17] A.M. Waite, B.A. Muhling and C.M. Holl, Food web structure in two counter-rotating eddies based on d15N and d13C isotopic analyses, Deep-Sea Research II , vol. 54, pp.1055-1075, (2007).

DOI: 10.1016/j.dsr2.2006.12.010

Google Scholar

[18] M. Gleitz, H. Kukert, U. Riebesell and G. S. Dieckmann, Carbon acquisition and growth of Antarctic sea ice diatoms inclosed bottle incubations, Mar. Ecol. Prog. Ser., vol. 135, p.169–177, (1996).

DOI: 10.3354/meps135169

Google Scholar

[19] F. Gervais and U. Riebesell, Effect of phosphorus limitation on elemental composition and stable carbon isotope fractionation in amarine diatomgrowing under different CO2 concentrations, Limnol. Oceanogr, vol. 46, p.497–504, (2001).

DOI: 10.4319/lo.2001.46.3.0497

Google Scholar

[20] T. Nakatsuka, N. Handa, E. Wada and C. S. Wong, The dynamic changes of stable isotopic ratios of carbon and nitrogen in suspended and sedimented particulate organic matter during a phytoplankton bloom, J. Mar. Res., vol. 50, p.267–296, (1992).

DOI: 10.1357/002224092784797692

Google Scholar

[21] I. J. Hodgkiss and K. C. Ho. Are changes in N: P ratios in coastal waters the key to increased red tide blooms?, Hydrobiologia, vol. 352, No. 1-3, pp.141-147, (1997).

DOI: 10.1007/978-94-011-5234-1_14

Google Scholar