Morphology and Dimensions Controlled of Titania Nanotubes in Mixed Organic-Inorganic Electrolyte

Article Preview

Abstract:

The formation of self-organized and highly ordered Titania nanotubes was achieved by anodisation of Ti in a mixture of water-ethylene glycol electrolyte. Control over the dimensions and morphology of nanotubes was successfully established by changing the anodisation voltage, the ammonium fluoride (NH4F) concentration and the anodisation time. A threshold voltage of 5 V is required for nanotube formation. Collapsed tubes were formed by applying electrochemical etching at high fluoride concentration. This study also showed that the nanotube lengths ranging from 0.5 to 2.6 μm could be formed by controlling the voltage applied and fluoride concentration with preferred growth along the c-axis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-17

Citation:

Online since:

April 2013

Export:

Price:

[1] G. K. Mor, O. K. Varghese, M. Paulose, K. G. Ong, C. A. Grimes, Fabrication of hydrogen sensors with transparent Titanium Oxide nanotube array thin films as sensing elements, Thin Solid Films 496 (2006) 42-48.

DOI: 10.1016/j.tsf.2005.08.190

Google Scholar

[2] Y. Sun, G. Wang, K. Yan, TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell, Int. J. Hyd. Ener. 36 (2011) 15502-15508.

DOI: 10.1016/j.ijhydene.2011.08.112

Google Scholar

[3] J. M Macak, G.B. Gong, M. Hueppe, P. Schmuki: Filling of TiO2 Nanotubes by self-Doping and electrodeposition, Adv. Mater. 19 (2007) 3027-3031.

DOI: 10.1002/adma.200602549

Google Scholar

[4] R. Narayanan, T.Y. Kwon, K.H. Kim, TiO2 nanotubes from stirred glycerol/NH4F electrolyte: Roughness, wetting behavior and adhesion for implant applications, Mater. Chem. Phys. 117 (2009) 460-464.

DOI: 10.1016/j.matchemphys.2009.06.023

Google Scholar

[5] H. Yin, H. Liu, W. Shen, The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization, Nanotechnol. 21 (2010) 035601.

DOI: 10.1088/0957-4484/21/3/035601

Google Scholar

[6] L.Y. Chin, Z. Zainal, M.Z. Hussein, T.W. Tee, Fabrication of highly ordered TiO2 Nanotubes from fluoride containing aqueous electrolyte by anodic oxidation and their photoelectrochemical response, J. Nanosci. Nanotechnol. 11 (2011) 4900-4909.

DOI: 10.1166/jnn.2011.4108

Google Scholar

[7] Z. Lockman, S. Sreekantan, S. Ismail, L. Schmidt-Mende, J.L. MacManus-Driscoll, Influence of anodisation voltage on the dimension of titania nanotubes, J. Alloys Comp. 503 (2009) 359-364.

DOI: 10.1016/j.jallcom.2009.12.093

Google Scholar

[8] S. Yoriya, M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, Fabrication of vertically oriented TiO2 nanotube arrays using dimethyl sulfoxide electrolytes, J. Phys. Chem. C 111 (2007) 13770-13766.

DOI: 10.1021/jp074655z

Google Scholar

[9] A. Elsanousi, J. Zhang, H.M.H. Fadlalla, F. Zhang, H. Wang, X. Ding, Z. Huang, C. Tang, Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation, J. Mater. Sci. 43 (2008) 7219-7224.

DOI: 10.1007/s10853-008-2947-9

Google Scholar

[10] Y. Yang, X. Wang, L. Li, Crystallization and phase transition of titanium oxide nanotube arrays, J. Am. Ceram. Soc. 91 (2008) 632-635.

DOI: 10.1111/j.1551-2916.2007.02133.x

Google Scholar