Micro-Bubble Generation Using Continuous-Wave Laser

Article Preview

Abstract:

This paper describes the design of a novel bubble generation technique and analyzes the impacts of different factors (e.g. power density of laser source, pad geometry and category of liquid) on the bubble generation. The bubble could be generated on the substrate at any point of interest where the metal pad covered. By controlling the work time and tuning power of laser source, the size of bubble could also be adjusted.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

May 2011

Export:

Price:

[1] L. Lin, Microscale thermal bubble formation: thermophysical phenomena and applications, Microscale Thermophys. Eng. 2 (1998) 71–85.

DOI: 10.1080/108939598199991

Google Scholar

[2] X. Mao, B. K. Juluri, M. I. Lapsley, Z. S. Stratton and T. J. Huang, Milliseconds microfluidic chaotic bubble mixer, Microfluid Nanofluid 8(2010) 139–144.

DOI: 10.1007/s10404-009-0496-4

Google Scholar

[3] J. Tsai and L. Lin, A thermal-bubble-actuated micronozzle-diffuser pump, J. Microelectromech. Syst. 11(2002) 665–671.

DOI: 10.1109/jmems.2002.802909

Google Scholar

[4] J. Tsai and L. Lin, Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump, Sen. Actuators A 97–98(2002) 665–671

DOI: 10.1016/s0924-4247(02)00031-6

Google Scholar

[5] A. A. Darhuber and S. M. Troian, Principle of microfluidic actuation by modelation of surface stresses, Annu. Rev. Fluid Mech. 37(2005) 425-455.

DOI: 10.1146/annurev.fluid.36.050802.122052

Google Scholar

[6] L. Lin, K. S. Udell and A, P. Pisano, Phase Change Phenomena on a Heated Polysilicon Micro Heater in Confined and Unconfined Micro Channels, Therm. Sci. Eng. 12(1994) 18–25.

Google Scholar

[7] S. aus der Wiesche, C. Rembe, C. Maier and E. P. Hofer, Dynamics in Microfluidic Systems with Microheaters, International Conference on Modeling and Simulation of Microsystems, 1999, 510–513.

Google Scholar

[8] P. Garstecki, M. J. Fuerstman, H. A. Stonec and G. M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up, Lab Chip 6 (2006) 437–446.

DOI: 10.1039/b510841a

Google Scholar

[9] Y.-C. Tan, J. S. Fisher, A. I. Lee, V. Cristini and A. P. Lee, Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab Chip 4 (2004) 292–298.

DOI: 10.1039/b403280m

Google Scholar

[10] R. Dijkinka and C. D. Ohl, Laser-induced cavitation based micropump, Lab Chip 8(2008) 1676–1681.

DOI: 10.1039/b806912c

Google Scholar