Protective Alumina Coatings by Low Temperature Metalorganic Chemical Vapour Deposition

Article Preview

Abstract:

Alumina thin films were processed by MOCVD from aluminium tri-iso-propoxide, with N2 as a carrier gas, occasional addition of water in the gas phase, deposition temperature in the range 350-700°C, total pressure 0.67 kPa (2 kPa when water was used). The films do not diffract Xray when prepared below 700°C. At 700°C, they start to crystallize as γ-alumina. EDS, EPMA, ERDA, RBS, FTIR and TGA revealed that films prepared in the range 350-415°C, without water in the gas phase, have an overall composition Al2O3-x(OH)2x, with x tending to 0 with increasing temperature. Al2O3 is obtained above 415°C. When water is added in the gas phase, the film composition is Al2O3, even below 415°C. Coatings deposited in these conditions show promising protection properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-248

Citation:

Online since:

October 2007

Export:

Price:

[1] D. Samélor, M.M. Sovar, A. Stefanescu, A.N. Gleizes, P. Alphonse and C. Vahlas, in: Proceedings of the Fifteenth European Conference on Chemical Vapor Deposition (EUROCVD-15), edited by A. Devi, H. Parala, M.L. Hitchman, R.A. Fischer and M.D. Allendorf, The Electrochemical Society Inc. (2005).

Google Scholar

[2] J.A. Aboaf: J. Electrochem. Soc. Vol. 114 (1967), p.948.

Google Scholar

[3] M.T. Duffy, J.E. Carnes and D. Richman: Metal. Trans. Vol 2 (1971), p.667.

Google Scholar

[4] M.T. Duffy and W. Kern: RCA Reviews Vol. 31 (1970), p.754.

Google Scholar

[5] M.T. Duffy and A.G. Revesz: J. Electrochem. Soc. Vol. 117 (1970), p.372.

Google Scholar

[6] M. Okamura and T. Kobayashi: Jap. J. Appl. Phys. Vol. 19 (1980), p.2151.

Google Scholar

[7] J. Fournier, W. DeSisto, R. Brusasco, M. Sosnowski, R. Kershaw, J. Baglio, K. Dwight and A. Wold: Mat. Res. Bull. (1988) Vol. 23, p.31.

DOI: 10.1016/0025-5408(88)90221-8

Google Scholar

[8] K. Tanaka, H. Takahashi, S. Kuniyoshi and H. Ohki: Solid-State Electronics (1980) Vol. 23, p.1093.

Google Scholar

[9] T. Kobayashi, M. Okamura, E. Yamaguchi, Y. Shinoda and Y. Hirota: J. Appl. Phys. (1981) Vol. 52, p.6434.

Google Scholar

[10] T. Ito and Y. Sakai: Solid-State Electronics (1974) Vol. 17, p.751.

Google Scholar

[11] J. Saraie, J. Kwon and Y. Yodogawa: J. Electrochem. Soc. (1985) Vol. 132, p.890.

Google Scholar

[12] J. Saraie, K. Ono and S. Takeuchi: J. Electrochem. Soc. (1989) Vol. 136, p.3139.

Google Scholar

[13] D.C. Cameron, L.D. Irving, G.R. Jones and J. Woodward: Thin Solid Films (1982) Vol. 91, p.339.

Google Scholar

[14] C. Dhanavantri and R.N. Karekar: Thin Solid Films (1989) Vol. 169, p.271.

Google Scholar

[15] C. Dhanavantri, R.N. Karekar and V.J. Rao: Thin Solid Films (1985) Vol. 127, p.85.

Google Scholar

[16] N. Hara, S. Nagata, N. Akao and K. Sugimoto: J. Electrochem. Soc. (1999) Vol. 146, p.510.

Google Scholar

[17] R.W. J. Morssinkhof, T. Fransen, M.M.D. Heusinkveld and P.J. Gellings: Mater. Sci. Eng. (1989) Vol. A121, p.449.

Google Scholar

[18] S. Ram, T.B. Singh and L.C. Pathak: Phys. Stat. Sol. (a) (1998) Vol. 165, p.151.

Google Scholar