Basic Numerical Analysis of a “Samanta” Based Forward Extrusion Process

Article Preview

Abstract:

Cold forging enables industrial mass production of steel based components characterized by high strength and precision. The present study focuses on the FE-based analysis of a forward extrusion process. The investigated process is the so called “Samanta”-process. In practice, this is also refered to extrusion in package. During the forming, multiple blanks are pressed sequentially through a die. The results reveal the process-specific "crown-shaped" area in the upper end region of the components. Furthermore, the tribological conditions reveal a great influence on the resulting component properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-34

Citation:

Online since:

August 2016

Export:

Price:

* - Corresponding Author

[1] Rech, J.; Moisan, A.: Surface integrity in finish hard turning of case-hardened steel. International Journal of Machine and Tools 43(2003), 543-550.

DOI: 10.1016/s0890-6955(02)00141-4

Google Scholar

[2] Derek Smith, J.: Gear Noise and Vibration. New York: Marcel Dekker, (2003).

Google Scholar

[3] Schwager, A.; Kammerer, M.; Siegert, K.; Felde, A.; Körner, E.; Szentmihalyi, V.: Kaltumformen schräg innenverzahnter Hohlräder. In: Konferenzband Neuere Entwicklungen in der Massivumformung, Stuttgart, 2003, 517-531.

Google Scholar

[4] Choi, J.C.; Choi, Y.: Precision forging of spur gears with inside relief. International Journal of Machine Tools and Manufacture 39(1999), 1575-1588.

DOI: 10.1016/s0890-6955(99)00015-2

Google Scholar

[5] Doege, E.; Nägele, H.: FE Simulation of the Precision Forging Process of Bevel Gears. Annals of the CIRP 43(1994)1, 241-244.

DOI: 10.1016/s0007-8506(07)62204-5

Google Scholar

[6] König, W.; Koll, W.: Cold extrusion of helical involute cylindrical gears. European Journal of Mechanical Engineering 35(1990)4, 179-183.

Google Scholar

[7] Choi, J.; Cho, H.; Kwon, H.: A new extrusion process for helical-gears: experimental study. Journal of Materials Processing Technology 44(1994), 35-53.

DOI: 10.1016/0924-0136(94)90036-1

Google Scholar

[8] Altan T.; Vazquez, V.: Numerical Process Simulation for Tool and Process Design in Bulk Metal Forming. Annals of the CIRP 45(1996)2, 599-615.

DOI: 10.1016/s0007-8506(07)60514-9

Google Scholar

[9] Samanta, S.K.: Helical Gear: A Novel Method of Manufacturing it. Proceedings of NAMRC IV, Columbus, Ohio, USA: Batelle Columbus Laboratories, 1976, 199-205.

Google Scholar

[10] König, W.; Steffens, K.; Hofmann, H.W.: Gear Production by Cold Forming. Annals of the CIRP 34(1985)1, 481-483.

DOI: 10.1016/s0007-8506(07)61816-2

Google Scholar

[11] Odening, D.; Meyer, M.; Klassen, A.; Bouguecha, A.; Behrens, B. -A.: Präzisionsschmieden. In: Bach, F. -W.; Kerber, K. (Hrsg. ): Prozesskette Präzisionsschmieden. Berlin: Springer, (2014).

DOI: 10.1007/978-3-642-34664-4_2

Google Scholar

[12] Bausch, T.: Innovative Zahnradfertigung - Verfahren, Maschinen und Werkzeuge zur kostengünstigen Herstellung von Stirnrädern mit hoher Qualität. Renningen: Expert, 2015, 5. Auflage.

Google Scholar

[13] Lennartz, J.: Kaltfließpressen von gerad- und schrägverzahnten Getriebewellen. Dissertation, RWTH Aachen, (1995).

Google Scholar

[14] VDI 3176, Verein Deutscher Ingenieure (VDI), Beuth, Düsseldorf, (1986).

Google Scholar

[15] International Cold Forging Group (ICFG), Doc. 6/82, Meisenbach, Bamberg, (1992).

Google Scholar

[16] Andreas, K.; Merklein, M.: Influence of surface integrity on the tribological performance of cold forging tools. Procedia CIRP 13(2014), 61-66.

DOI: 10.1016/j.procir.2014.04.011

Google Scholar