Three-Dimensional Finite Element Analysis of Dental Implant Threads

Article Preview

Abstract:

This paper presents the use of Three-Dimensional Finite Element Method (3D-FEM) for biomechanical analysis on dental implant prosthetics. This research focuses on three patents of threads of dental implant systems from United States Patent and Trademark Office (USPTO) and two new conceptual design models. The three-dimensional finite element analysis is performed on dental implant models, with compressive forces of 50, 100, and 150 N, and a shear force of 20 N with the force angle of 60 degrees with the normal line respectively. The Stress and displacement analysis is conducted at four different areas (abutment, implant, cortical bone, and cancellous bone). Findings from this research provide guidelines for new product design of dental implant prosthetics with stress distribution and displacement characteristics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-146

Citation:

Online since:

February 2018

Export:

Price:

* - Corresponding Author

[1] A. J. C. Trappey, C. V. Trappey, H. Y. Peng, and T. M. Wang, Ontology-based Dental Implant Connection Patent Analysis, Proceedings, The 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2013), Whistler, BC, Canada, (2013).

DOI: 10.1109/cscwd.2013.6580972

Google Scholar

[2] S. W. C. Chang, C. V. Trappey, A. J. C. Trappey, and S. Chun-Yi Wu, Forecasting Dental Implant Technologies Using Patent Analysis, Proceedings of PICMET 14: Infrastructure and Service Integration, 27-31 July 2014, Kanazawa, Japan, (2014).

Google Scholar

[3] I. Roatesi, S. Roatesi, and C. Rotaru, FEM analysis of one element prosthesis on dental implant, Proceedings, The 5th IEEE International Conference on E-Health and Bioengineering (EHB 2015), Iaúi, Romania, (2015).

DOI: 10.1109/ehb.2015.7391353

Google Scholar

[4] L. Kong, Y. Zhao, K. Hu, D. Li, H. Zhou, Z. Wu, and B. Liu. Selection of the implant thread pitch for optimal biomechanical properties: A three-dimensional finite element analysis, Adv. Eng. Softw. 40 (2009) 474–478.

DOI: 10.1016/j.advengsoft.2008.08.003

Google Scholar

[5] L. Kong, Z. Gu, K. Hu, H. Zhou, Y. Liu, and B. Liu, Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: A three-dimensional finite element analysis, Adv. Eng. Softw. 40 (2009) 935-940.

DOI: 10.1016/j.advengsoft.2008.12.010

Google Scholar

[6] Y. Sun, L. Kong, K. Hu, C. Xie, H. Zhou, Y. Liu, and B. Liu, Selection of the implant transgingival height for optimal biomechanical properties: a three-dimensional finite element analysis, British J. Oral Maxillofac. Surg. 47 (2009) 393–398.

DOI: 10.1016/j.bjoms.2008.09.009

Google Scholar

[7] J. R. Xiao, Y. F. Li, S. M. Guan, L. Song, L. X. Xu, and L. Kong, The Biomechanical Analysis of Simulating Implants in Function Under Osteoporotic Jawbone by Comparing Cylindrical, Apical Tapered, Neck Tapered, and Expandable Type Implants: A 3-Dimensional Finite Element Analysis, British J. Oral Maxillofac. Surg. 69 (2001).

DOI: 10.1016/j.joms.2010.12.006

Google Scholar

[8] Y. Gao, Y. F. Li, B. Shao, T. Li, N. Xia, L. X. Xu, Z. Y. Wang, and L. Kong Biomechanical optimisation of the length ratio of the two endosseous portions in distraction implants: a three-dimensional finite element analysis, British J. Oral Maxillofac. Surg. 50 (2012).

DOI: 10.1016/j.bjoms.2011.11.007

Google Scholar

[9] T. Li, X. Yang, D. Zhang, H. Zhou, J. Shao, Y. Ding, and L. Kong, Analysis of the biomechanical feasibility of a wide implant in moderately atrophic maxillary sinus region with finite element method, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 114 (2012).

DOI: 10.1016/j.oooo.2011.08.010

Google Scholar

[10] G. Zhang, H. Yuan, X. Chen, W. Wang, J. Chen, J. Liang, and P. Zhang, A Three-Dimensional Finite Element Study on the Biomechanical Simulation of Various Structured Dental Implants and Their Surrounding Bone Tissues, Int. J. Dent. 2016 (2016).

DOI: 10.1155/2016/4867402

Google Scholar

[11] The United States Patent and Trademark Office (USPTO) US20140212844A1.

Google Scholar

[12] The United States Patent and Trademark Office (USPTO) US20140816800A1.

Google Scholar

[13] The United States Patent and Trademark Office (USPTO) US20140147808A1.

Google Scholar