Structures of Water Molecules in Carbon Nanotubes Induced with Electric Fields and its Application for Water-Methanol Separation

Article Preview

Abstract:

Water confined in carbon nanotubes (CNTs) under the influence of an electric field has interesting properties that are potential for nanofluidic-based applications. With molecular dynamics simulations, this work shows that the electric field induces formation of ordered structures of water molecules in the CNTs. Formation of the ordered structures strengthens the electrostatic interaction between the water molecules. As a result, water strongly prefers to fill CNTs over methanol and it produces a separation effect. Interestingly, the separation effect with the electric field does not decrease for a wide range of CNT diameter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

453-456

Citation:

Online since:

June 2016

Export:

Price:

* - Corresponding Author

[1] G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature 414 (2001) 188-190.

Google Scholar

[2] M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature 438 (2005) 44.

Google Scholar

[3] B. Corry, Energy Environ. Sci. 4 (2011) 751-759.

Google Scholar

[4] A. Kalra, S. Garde, and G. Hummer, Proc. Natl. Acad. Sci. U. S. A. 100 (2003) 10175-10180.

DOI: 10.1073/pnas.1633354100

Google Scholar

[5] K. Koga, G. Gao, H. Tanaka, and X. C. Zeng, Nature 412 (2001) 802-805.

Google Scholar

[6] J. Bai, J. Wang, and X. C. Zeng, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 19664-19667.

Google Scholar

[7] S. Vaitheeswaran, J. C. Rasaiah and G. Hummer, J. Chem. Phys. 121 (2004) 7955-7965.

Google Scholar

[8] Y. He, G. Sun, K. Koga and L. Xu, Sci. Rep. 4 (2014) 6596-6600.

Google Scholar

[9] A. Philippsen, W. Im, A. Engel, T. Schirmer, B. Roux and D. J. Müller, Biophys. J. 82 (2002) 1667-1676.

Google Scholar

[10] M. L. Berkowitz, D. L. Bostick, and S. Pandit, Chem. Rev. 106 (2006) 1527-1539.

Google Scholar

[11] M. S. P. Sansom and P. C. Biggin, Nature 414 (2001) 156-159.

Google Scholar

[12] K. F. Rinne, S. Gekle, D. J. Bonthuis and R. R. Netz, Nano Lett. 12 (2012) 1780-1783.

DOI: 10.1021/nl203614t

Google Scholar

[13] J. Su and H. Guo, ACS Nano 5 (2011) 351-359.

Google Scholar

[14] M. Suk and N. Aluru, Phys. Chem. Chem. Phys. 11 (2009) 8614-8619.

Google Scholar

[15] H. Berendsen, J. Postma, W. van Gunsteren, J. Hermans et al., Intermol. Forces 14 (1981) 331-342.

Google Scholar

[16] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, J. Chem. Theory Comput. 4 (2008) 435-447.

Google Scholar

[17] T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98 (1993) 10089-10092.

Google Scholar

[18] S. Nosé, J. Chem. Phys. 81 (1984)511-519.

Google Scholar

[19] W. G. Hoover, Phys. Rev. A 31 (1985) 1695-1697.

Google Scholar

[20] Winarto, D. Takaiwa, E. Yamamoto and K. Yasuoka, J. Chem. Phys. 142 (2015) 124701.

Google Scholar

[21] Winarto, D. Takaiwa, E. Yamamoto and K. Yasuoka, Nanoscale 7 (2015) 12659-12665.

DOI: 10.1039/c5nr02182k

Google Scholar

[22] W. -H. Zhao, B. Shang, S. -P. Du, L. -F. Yuan, J. Yang and X. C. Zeng, J. Chem. Phys. 137 2012) 034501.

Google Scholar