Adaptive Optimal Multiple Object Tracking Based on Global Cameras for a Decentralized Autonomous Transport System

Article Preview

Abstract:

In order to adapt to the mass customization, a new concept of material flow systems that can handle product varieties is needed. Firstly, this paper analyzes the current problems and future requirements of the structure of a new production system. Then, in response to current limitations, the corresponding concept of a decentralized transport system for low payloads with high flexibility is introduced. For this purpose, automated guided vehicles (AGVs) as an effective means of transport are used. The key issues of the autonomous transport system are then researched, and an improvement of the multiple object tracking algorithm is proposed. We demonstrate the performance of our proposed system with a designed workspace. Based on the demonstration and experiment, results show that the proposed concept and the tracking algorithm are appropriate and robust to be implemented in real-time applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-7

Citation:

Online since:

June 2016

Export:

Price:

* - Corresponding Author

[1] S.J. Hu, X. Zhu, H. Wang, Y. Koren, Product variety and manufacturing complexity in assembly systems and supply chains, CIRP Ann. Manuf. Technol. 57 (2008) 45–48.

DOI: 10.1016/j.cirp.2008.03.138

Google Scholar

[2] W. Eversheim, Organisation in der Produktionstechnik Grundlagen, 3rd ed., VDI-Verl., Düsseldorf, (1996).

Google Scholar

[3] H. Martin, Transport- und Lagerlogistik: Planung, Struktur, Steuerung und Kosten von Systemen der Intralogistik, 9th ed., Wiesbaden: Imprint: Springer Vieweg, (2014).

DOI: 10.1007/978-3-658-03143-5

Google Scholar

[4] K. -H. Wehking, C. Vorwerk, Technische Basiskomponenten der Intralogistik im Wandel- Zukünftig: Stückgutförderung mit Fahrzeugschwarm, Hebezeuge-Fördermittel, 48(5) (2008) 242–245.

Google Scholar

[5] K. Feldmann, M. Weber, W. Wolf, Decentralized structure recognition and automated network configuration for Plug&Produce-able modular assembly systems, Production Engineering - Annals of the German Academic Society for Production Engineering (WGP), (2006).

Google Scholar

[6] Information on https: /www. ifl. kit. edu/projekte_1312. php.

Google Scholar

[7] Information on http: /www. goetting-agv. com/components/43600.

Google Scholar

[8] F. Lütteke, Vielseitiges autonomes Transportsystem basierend auf Weltmodellerstellung mittels Datenfusion von Deckenkameras und Fahrzeugsensoren, Diss., FAU Erlangen-Nürnberg, Erlangen (2014).

Google Scholar

[9] T. Rennekamp, K. Homeier, T. Kroeger, Distributed sensing and prediction of obstacle motions for mobile robot motion planning, IEEE/RSJ Intl. Conf. Intelligent Robots and Systems (2006) 4833-4838.

DOI: 10.1109/iros.2006.282359

Google Scholar

[10] X. Zhang, F. Lütteke, C. Ziegler, J. Franke, Self-learning RRT* algorithm for mobile robot motion planning in complex environments, Proc. Of the 13th Intl. Conf. Intelligent Autonomous Systems, Springer, (2015) 302: 57.

DOI: 10.1007/978-3-319-08338-4_5

Google Scholar

[11] W. Luo, X. Zhao, T. -K. Kim, Multiple object tracking: A review, arXiv preprint arXiv: 1409. 7618 (2014).

Google Scholar

[12] J. Munkres, Algorithms for the assignment and transportation problems, Journal of the Society for Industrial and Applied Mathematics, 5(1): 32–38 (1957).

Google Scholar

[13] J.F. Henriques, R. Caseiro, J. Batista, Globally optimal solution to multi-object tracking with merged measurements, IEEE Intl. Conf. on Computer Vision (ICCV), (2011) 2470-2477.

DOI: 10.1109/iccv.2011.6126532

Google Scholar

[14] M.D. Breitenstein, F. Reichlin, et al, Robust tracking-by-detection using a detector confidence particle filter, IEEE Intl. Conf. on Computer Vision (ICCV), (2009) 1515-1522.

DOI: 10.1109/iccv.2009.5459278

Google Scholar

[15] M. Betke, D.E. Hirsh, et al, Tracking large variable numbers of objects in clutter, IEEE Conf. on Computer Vision and Pattern Recognition, (2007) 1-8.

DOI: 10.1109/cvpr.2007.382994

Google Scholar

[16] Assign detections to tracks for multiobject tracking, MathWorks, retrieved from http: /de. mathworks. com/help/vision/ref/assigndetectionstotracks. html.

Google Scholar

[17] F. Luetteke, X. Zhang, J. Franke, Implementation of the Hungarian Method for object tracking on a camera monitored transportation system, Proc. of ROBOTIK 2012; 7th German Conf. on Robotics VDE, (2012) 1-6.

Google Scholar