Characterization of Forsterite Synthesized by Solid-State Reaction with Ball Milling Method

Article Preview

Abstract:

Talc and magnesium oxide are used to prepare forsterite (Mg2SiO4) powder by solid-state reaction with ball milling method. The samples were sintered at temperature 1200°C, 1300°C, 1400°C and 1500°C with four different holding time duration 2 hours, 1 hour and 1 minute with ramp rate of 10°C/min respectively via conventional pressureless sintering method. 3 hours ball milling is sufficient to form pure forsterite without any secondary phase. Highest values for fracture toughness (3.8 MPa.m1/2) and Vickers micro-hardness (5.0 GPa) recorded with sintering temperature 1500°C with 1 hour holding time which makes forsterite suitable potential for biomedical application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

416-419

Citation:

Online since:

August 2013

Export:

Price:

[1] S. Ni, L. Chou, J. Chang, Preparation and characterization of forsterite (Mg2SiO4) bioceramics, Ceramics International. 33 (2007) 83-88.

DOI: 10.1016/j.ceramint.2005.07.021

Google Scholar

[2] H. E. Swanson, E. Targe, National Bureau of Standards, (US)Circ. 359 (1953) 83-86.

Google Scholar

[3] M. H. E. Martin, C. K. Ober, C. R. Hubbard, W. D. Porter, O. B. Cavin, Poly(methacrylate) precursor to forsterite, Journal of American Ceramic Society. 75 (1992) 1831-1838.

DOI: 10.1111/j.1151-2916.1992.tb07204.x

Google Scholar

[4] O. Yamaguchi, Y. Nakajima, K. Shimizu, Formation of forsterite (2MgO SiO2) from the mixture prepared by alkoxy-method, Chemistry Letters. 5 (1976) 401-404.

DOI: 10.1246/cl.1976.401

Google Scholar

[5] G. W. Brindley, R. Hayami, Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2. Philosophical Magazine. 12 (1965) 505-514.

DOI: 10.1080/14786436508218896

Google Scholar

[6] G. A. Afonina, V. G. Leonov, O. N. Popova. Production of forsterite powder using sol-gel technology, Glass and ceramics. 62 (2005) 7-8.

DOI: 10.1007/s10717-005-0083-4

Google Scholar

[7] C. Kosanovic, N. Stubicar, N. Tomasic, V. Bermanec, M. Stubicar, Synthesis of a forsterite powder by combined ball milling and thermal treatment, Journal of Alloys and Compounds. 289 (2005) 306-309.

DOI: 10.1016/j.jallcom.2004.08.015

Google Scholar

[8] M. H. Fathi, M. Kharaziha, Mechanically activated crystalization of phase pure nanocrystalline forsterite powders, Materials Letters. 62 (2008) 4306-4309.

DOI: 10.1016/j.matlet.2008.07.015

Google Scholar

[9] S. Donthamsetty, N. Rao D, Investigation on mechanical properties of A356 nanocomposites fabricated by ultrasonic assisted cavitaion, Journal of Mechanical Engineering. 41 (2) (2010) 121-129.

DOI: 10.3329/jme.v41i2.7507

Google Scholar

[10] K. Niihara, R. Morena, D. P. Hasselman, Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratio, Journal of Materials of Science Letters. 1 (1982) 13-16.

DOI: 10.1007/bf00724706

Google Scholar

[11] F. Tavangarian, R. Emadi, Synthesis of nanocrystalline forsterite (Mg2SiO4) powder by combined mechanical activation and thermal treatment, Materials Research Bulletin. 45 (2010) 388-391.

DOI: 10.1016/j.materresbull.2009.12.032

Google Scholar

[12] M. N. Ahsan, C. P. Paul, L. M. Kukreja, A. J. Pinkerton, Porous structures fabrication by continuous and pulsed laser metal deposition for biomedical applications, modeling and experimental investigation, Journal of Materials Processing Technology. 211 (2011).

DOI: 10.1016/j.jmatprotec.2010.11.014

Google Scholar

[13] L. L. Hench, Bioceramics: From concept to clinic, Journal of American Ceramic Society. 74 (1991) 1487-1506.

DOI: 10.1111/j.1151-2916.1991.tb07132.x

Google Scholar

[14] J. Wang, L. L. Shaw, Grain-size dependence of the hardness of submicrometer and nanometer hydroxyapatite, Journal of American Ceramic Society. 93 (2010) 601-604.

DOI: 10.1111/j.1551-2916.2009.03455.x

Google Scholar