Simultaneous Precipitation and Recrystallization during Hot Deformation of Ti, Nb and V Microalloyed Steel

Article Preview

Abstract:

Recrystallization is a major means for controlling the grain size of steel during hot deformation. Usually, small grain sizes deliver superior mechanical properties. To aid the grain size controlling effect of recrystallization, small precipitates of carbo-nitride particles can be utilized to hinder the movement of grain boundaries. Interestingly, these particles are not only effective during grain growth, but also during recrystallization. In the present work, a recently developed state-parameter based model is introduced that is capable of describing both, the individual processes of static recrystallization, dynamic and static recovery and precipitation as well as the mutual interaction of these mechanisms in the course of elevated temperature processing. The evolution of state parameters within the model is discussed and the simulation results are compared to experimental information. Within our approach, a vast amount of experimental data for microalloyed steel is reproduced on basis of a single set of input parameters

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2463-2467

Citation:

Online since:

November 2016

Export:

Price:

[1] J. Beynon, C.M. Sellars, Modelling Microstructure and its effects during multipass hot rolling, ISIJ Int. 32 (1992) 359–367.

DOI: 10.2355/isijinternational.32.359

Google Scholar

[2] C.S. Smith, Introduction to Grains, Phases, and Interfaces—an Interpretation of Microstructure, Trans. AIME. 175 (1948) 15–51. doi: 10. 1007/s11661-010-0215-5.

Google Scholar

[3] S.F. Medina, J.E. Mancilla, Static recrystallization modelling of hot deformed steels containing several alloying elements, ISIJ Int. 36 (1996) 1070–1076.

DOI: 10.2355/isijinternational.36.1070

Google Scholar

[4] H.S. Zurob, Y. Brechet, G. Purdy, A model for the competition of precipitation and recrystallization, Acta Mater. 49 (2001) 4183–4190. doi: 10. 1016/S1359-6454(01)00315-9.

DOI: 10.1016/s1359-6454(01)00315-9

Google Scholar

[5] J.W. Cahn, The impurity drag effect in grain boundary motion, Acta Metall. 10 (1962) 789–798. doi: 10. 1016/0001-6160(62)90092-5.

DOI: 10.1016/0001-6160(62)90092-5

Google Scholar

[6] H. Buken, P. Sherstnev, E. Kozeschnik, A state parameter-based model for static recrystallization interacting with precipitation, Model. Simul. Mater. Sci. Eng. 24 (2016) 11pp.

DOI: 10.1088/0965-0393/24/3/035006

Google Scholar

[7] H. Buken, E. Kozeschnik, State parameter-based modelling of microstructure evolution in micro-alloyed steel during hot forming, in: Mater. Sci. Eng. 119, 2016: p.012023. doi: 10. 1088/1757-899X/119/1/012023.

DOI: 10.1088/1757-899x/119/1/012023

Google Scholar

[8] H.L. Andrade, M.G. Akben, J.J. Jonas, Effect of molybdenum, niobium, and vanadium on static recovery and recrystallization and on solute strengthening in microalloyed steels, Metall. Trans. A. 14 (1983) 1967–1977. doi: 10. 1007/BF02662364.

DOI: 10.1007/bf02662364

Google Scholar

[9] S.F. Medina, a. Quispe, Improved Model for Static Recrystallization Kinetics of Hot Deformed Austenite in Low Alloy and Nb/V Microalloyed Steels., ISIJ Int. 41 (2001) 774–781. doi: 10. 2355/isijinternational. 41. 774.

DOI: 10.2355/isijinternational.41.774

Google Scholar

[10] E. Nes, N. Ryum, O. Hunderi, On the Zener drag, Acta Metall. 33 (1985) 11–22. doi: 10. 1016/0001-6160(85)90214-7.

DOI: 10.1016/0001-6160(85)90214-7

Google Scholar

[11] E. Nes, The effect of a fine particle dispersion on heterogeneous recrystallization, Acta Metall. 24 (1976) 391–398. doi: 10. 1016/0001-6160(76)90059-6.

DOI: 10.1016/0001-6160(76)90059-6

Google Scholar

[12] F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—II. The effect of second-phase particles, Acta Mater. 45 (1997).

DOI: 10.1016/s1359-6454(97)00173-0

Google Scholar

[13] H.S. Zurob, C.R. Hutchinson, Y. Brechet, G. Purdy, Modelling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization, Acta Mater. 50 (2002) 3075–3092. doi: 10. 1016/S1359-6454(02)00097-6.

DOI: 10.1016/s1359-6454(02)00097-6

Google Scholar

[14] G. Stechauner, E. Kozeschnik, Assessment of substitutional self-diffusion along short-circuit paths in Al, Fe and Ni, Calphad. 47 (2014) 92–99. doi: 10. 1016/j. calphad. 2014. 06. 008.

DOI: 10.1016/j.calphad.2014.06.008

Google Scholar

[15] D. Turnbull, Theory of grain boundary migration rates, Trans. AIME. 191 (1951) 661–665.

Google Scholar

[16] T. Zhou, R.J. O'Malley, H.S. Zurob, Study of grain-growth kinetics in delta-ferrite and austenite with application to thin-slab cast direct-rolling microalloyed steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 41 (2010).

DOI: 10.1007/s11661-010-0246-y

Google Scholar

[17] H.O.K. Kirchner, Coarsening of grain-boundary precipitates, Metall. Trans. 2 (1971) 2861–2864. doi: 10. 1007/BF02813264.

DOI: 10.1007/bf02813264

Google Scholar

[18] S.F. Medina, a. Quispe, Influence of Strain on Induced Precipitation Kinetics on Microalloyed Steels, ISIJ Int. 36 (1996) 1295–1300.

DOI: 10.2355/isijinternational.36.1295

Google Scholar

[19] S.F. Medina, The influence of Niobium on the static recrystallization of hot deformed austenite and on strain induced precipitation kinetics, Scr. Metall. Mater. 32 (1995) 43–48.

DOI: 10.1016/s0956-716x(99)80009-0

Google Scholar

[20] S.F. Medina, J.E. Mancilla, C. a. Hernández, Static Recrystallization of Hot Deformed Austenite and Induced Precipitation Kinetics in Vanadium Microalloyed Steels., ISIJ Int. 34 (1994) 689–696. doi: 10. 2355/isijinternational. 34. 689.

DOI: 10.2355/isijinternational.34.689

Google Scholar