The Reactive Element Effect – Past, Present and Future

Article Preview

Abstract:

The “reactive element effect”, modified from its earlier representation of the “rare earth effect”, is a well known term within the oxidation community. It describes several beneficial outcomes on the oxidation behavior of alumina and chromia forming alloys. Any element can be considered “reactive” if it is more oxygen active than the scale forming element, namely that of Al or Cr. However, the relative effectiveness of each element can be quite different. Numerous scientific studies have been carried out on this topic since its discovery more than 70 years ago to gain understanding of the manifestations of and reasons for these effects. This paper gives an overview that summarizes current understandings on this effect and points to issues that warrant further studies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

September 2011

Authors:

Export:

Price:

[1] L.B. Pfeil, U.K. Patent No. 459848. (1937).

Google Scholar

[2] D.P. Whittle and J. Stringer: J. Phil. Trans. R. Soc. London Vol. A295 (1980), p.309.

Google Scholar

[3] B.A. Pint, in: John Stringer Symposium on High Temp. Corrosion, edited by P.T. Tortorelli, I.G. Wright and P.Y. Hou, ASM International, OH (2003), p.52.

Google Scholar

[4] M.S. Seltzer, B.A. Wilcox, J. Stringer: J. Met. Trans. Vol. 3 (1972), p.2391; M.S. Seltzer: ibid p.2357.

Google Scholar

[5] P. Nanni, C.T.H. Stoddart and E.D. Hondros: Mat. Chem. Vol. 1 (1976), p.297.

Google Scholar

[6] H-b. Guo, X-y. Wang, J. Li, S-x. Wang and S-k. Gong: Trans. Nonferrous Met. Soc. China, Vol. 19 (2009), p.1185.

Google Scholar

[7] B.A. Pint, A.J. Garratt-Reed and L.W. Hobbs: Mater. High Temp. Vol. 13 (1995), p.3.

Google Scholar

[8] P.Y. Hou and J. Stringer: Mat. Sci. and Eng. Vol. 87 (1987), p.295.

Google Scholar

[9] P.Y. Hou, I. Brown and J. Stringer: Nucl. Inst. and Methods Vol. B59/60 (1991), p.1345.

Google Scholar

[10] H. Hindam and D.P. Whittle: Oxid. Metals Vol. 18 (1982), p.245.

Google Scholar

[11] P.Y. Hou: J. Am. Ceram. Soc. Vol. 86 (2003), p.660.

Google Scholar

[12] K. Przybylski, A.J. Garrett-Reed, B.A. Pint, E.P. Katz and G.J. Yurek: J. Electrochem. Soc. Vol. 134 (1987), p.3207.

Google Scholar

[13] C.M. Cotell, G.J. Yurek, R.J. Hussey, D.F. Mitchell and M.J. Graham: Oxid. Met. Vol. 34 (1990), p.173.

Google Scholar

[14] C. Mennicke, E. Schumann, J. Le Coze, J.L. Smialek, G.M. Meier, and M. Ruhle, in: Microscopy of Oxidation-3, edited by S.B. Newcomb, and J.A. Little, Institute of Materials, UK (1997), p.95.

Google Scholar

[15] B.A. Pint: Oxid. Met. Vol. 45 (1996), p.1.

Google Scholar

[16] S. Galmarini,U. Aschauer and P. Brown: J. Amer. Cerem. Soc. Vol. 91 (2008), p.3643.

Google Scholar

[17] T. Gemming, S. Nufer, W. Kurtz and M. Ruhle: J. Amer. Cerem. Soc. Vol. 86 (2003), p.590.

Google Scholar

[18] J.P. Buban, K. Matsunaga, J. Chen, N. Shibata, W.Y. Ching, T. Yamamoto and Y. Ikuhara: Science Vol. 311 (2006) p.212.

Google Scholar

[19] I. Milas, B. Hinnemann and E.A. Carter: J. Mater. Res. Vol. 23 (2008), p.1494.

Google Scholar

[20] D.M. Duffy and P.W. Tasker: Phil. Mag. Vol. A50 (1984), p.155.

Google Scholar

[21] A.H. Heuer: J. Euro. Ceram. Soc. Vol. 28 (2008), p.1495.

Google Scholar

[22] A.W. Funkenbusch, J.G. Smeggil and N.S. Bornstein: Metall. Trans. Vol. 16A (1985), p.1164.

Google Scholar

[23] Y, Ideda, K. Nii and K. Yoshihara: Trans. Japan Inst. Met. Supply Vol. 24 (1983), p.207.

Google Scholar

[24] D.G. Lees: Oxid. Met. Vol. 27 (1987), p.75.

Google Scholar

[25] P.Y. Hou: Ann. Rev. Mat. Res. Vol. 38 (2008), p.275.

Google Scholar

[26] P. Fox, D.G. Lees and G.W. Lorimer: Oxid. Met. Vol. 36 (1991), p.491.

Google Scholar

[27] R. Molins, I. Rouzou and P.Y. Hou: Mater. Sci. Eng. A Vol. 454-455 (2007), p.80.

Google Scholar

[28] P.Y. Hou: in: John Stringer Symposium on High Temp. Corrosion, edited by P.T. Tortorelli, I.G. Wright and P.Y. Hou, ASM International, OH (2003), p.164.

Google Scholar

[29] P.Y. Hou and K. Priimak: Oxid. Met. Vol. 63 (2005), p.113.

Google Scholar

[30] J.D. Kiely, T. Yeh and D.A. Bonnell: Surf. Sci. Vol. 393 (1997), p. L126.

Google Scholar

[31] Y. Jiang, J.R. Smith, and A.G. Evans: Appl. Phys. Lett. Vol. 92 (2008), p.141918.

Google Scholar

[32] K.M. Carling and E.A. Carter: Acta Met. Vol. 59 (2007), p.2791.

Google Scholar

[33] J.L. Smialek: Metall. Trans. Vol. 22A (1991), p.739.

Google Scholar

[34] P.Y. Hou and J.L. Smialek: Scripta Met. Vol. 33 (1995), p.1409.

Google Scholar

[35] P.Y. Hou: Oxid. Met. Vol. 52 (1999), p.337.

Google Scholar

[36] Y. Hong, A.B. Anderson and J.L. Smialek: Surf. Sci. Vol. 230 (1990), p.175.

Google Scholar

[37] M.S. Li and P.Y. Hou: Acta Met. Vol. 55 (2007), p.443.

Google Scholar

[38] B.A. Pint: J. Am. Ceram. Soc. Vol. 86 (2003), p.686.

Google Scholar

[39] J. Klower: Mater. und Corr. Vol. 51 (2000), p.373.

Google Scholar

[40] A. Gil, D. Naumenko, R. Vassen, J. Toscano, M. Subanovic, L. Singheiser and W.J. Quadakkers: Surf. Coat. Tech. Vol. 204 (2009), p.531.

DOI: 10.1016/j.surfcoat.2009.08.034

Google Scholar

[41] E. Wessel, V. Kochubey, D. Naumenko, L. Niewolak, L. Singheiser and W.J. Quadakkers: Scripta Mater, Vol. 51 (2004), p.987.

DOI: 10.1016/j.scriptamat.2004.07.023

Google Scholar

[42] B.A. Pint, K.L. More and I.G. Wright: Mater. High Temp. Vol. 20 (2003), p.86.

Google Scholar

[43] S. Taniguchi and T. Shibata: Intermetallics Vol. 4 (1996) S87.

Google Scholar