Development of Empirical Equations for Irradiance Profile of a Standard Parabolic Trough Collector Using Monte Carlo Ray Tracing Technique

Article Preview

Abstract:

This article explains a technique in which equations are developed to produce the irradiance profile around the receiver of LS2 collector using a vigorouslyverified MCRT model. A large range of test conditions including daily normal insolation, selective coatings and glass envelop conditions were chosen from the published data by Dudley et al. [1] for the job. The R2 value is excellent that varies between 0.9857 and 0.9999. Therefore, these equations can be used confidently to produce boundary heat flux profile of the collector at normal incident for conjugate heat transfer analyses of the receiver.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 860-863)

Pages:

180-190

Citation:

Online since:

December 2013

Keywords:

Export:

Price:

* - Corresponding Author

[1] Dudley, V.E., G.J. Kolb, A.R. Mahoney, T.R. Mancini, C.W. Matthews, M. Sloan, and D. Kearney, Test results: SEGS LS-2 solar collector, in Other Information: PBD: Dec 1994. 1994. p. Medium: P; Size: 139 p.

DOI: 10.2172/70756

Google Scholar

[2] Price, H., E. Lupfert, D. Kearney, E. Zarza, G. Cohen, R. Gee, and R. Mahoney, Advances in Parabolic Trough Solar Power Technology. Journal of Solar Energy Engineering, 2002. 124: pp.109-125.

DOI: 10.1115/1.1467922

Google Scholar

[3] Sheldon M, J., Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation. Solar Energy, 1986. 37(5): pp.335-345.

DOI: 10.1016/0038-092x(86)90130-1

Google Scholar

[4] Grena, R., Optical simulation of a parabolic solar trough collector. International Journal of Sustainable Energy, 2009. 29(1): pp.19-36.

DOI: 10.1080/14786450903302808

Google Scholar

[5] Cheng, Z.D., Y.L. He, J. Xiao, Y.B. Tao, and R.J. Xu, Three-dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. International Communications in Heat and Mass Transfer, 2010. 37(7): pp.782-787.

DOI: 10.1016/j.icheatmasstransfer.2010.05.002

Google Scholar

[6] Forristall, R., Heat Transfer Analysis and Modeling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver. 2003, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401-3393, Technical report No. NERL/TP-550-34169.

DOI: 10.2172/15004820

Google Scholar

[7] Cheng, Z.D., Y.L. He, and F.Q. Cui, A new modelling method and unified code with MCRT for concentrating solar collectors and its applications. Applied Energy, 2013. 101(0): pp.686-698.

DOI: 10.1016/j.apenergy.2012.07.048

Google Scholar

[8] He, Y. -L., J. Xiao, Z. -D. Cheng, and Y. -B. Tao, A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector. Renewable Energy, 2011. 36(3): pp.976-985.

DOI: 10.1016/j.renene.2010.07.017

Google Scholar

[9] García-Valladares, O. and N. Velázquez, Numerical simulation of parabolic trough solar collector: Improvement using counter flow concentric circular heat exchangers. International Journal of Heat and Mass Transfer, 2009. 52(3–4): pp.597-609.

DOI: 10.1016/j.ijheatmasstransfer.2008.08.004

Google Scholar

[10] Naeeni, N. and M. Yaghoubi, Analysis of wind flow around a parabolic collector (2) heat transfer from receiver tube. Renewable Energy, 2007. 32(8): pp.1259-1272.

DOI: 10.1016/j.renene.2006.06.005

Google Scholar

[11] Cheng, Z.D., Y.L. He, F.Q. Cui, R.J. Xu, and Y.B. Tao, Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method. Solar Energy, 2012. 86(6): pp.1770-1784.

DOI: 10.1016/j.solener.2012.02.039

Google Scholar

[12] Wirz, M., M. Roesle, and A. Steinfeld, Three-Dimensional Optical and Thermal Numerical Model of Solar Tubular Receivers in Parabolic Trough Concentrators. Journal of Solar Energy Engineering, 2012. 134(4): pp.041012-041012.

DOI: 10.1115/1.4007494

Google Scholar

[13] Islam, M., A. Karim, S.C. Saha, P.K. Yarlagadda, S. Miller, and I. Ullah, Visualization of thermal characteristics around the absorber tube of a standard parabolic trough thermal collector by 3D simulation, in In the Proceedings of the 4th International Conference on Computational Methods (ICCM2012), November 25-27. 2012: Gold Coast, Australia.

Google Scholar

[14] Islam, M., A. Karim, S.C. Saha, S. Miller, and P.K. Yarlagadda. Three dimensional simulation of a parabolic trough concentrator thermal collector. in In the Proceedings of the 50th annual conference, Australian Solar Energy Society (AuSES), 6-7 December. 2012. Swinburne University of Technology, Melbourne, Australia.

Google Scholar

[15] Ahamed, J.U., M.M.K. Bhuiya, S. R, H.H. Masjuki, M.A.R. Sarkar, A.S.M. Sayem, and M. Islam, FORCED CONVECTION HEAT TRANSFER PERFORMANCE OF POROUS TWISTED TAPE INSERT. Engineering e-Transaction, 2010. 5(2): pp.67-79.

Google Scholar

[16] Al-Ansary, H. and O. Zeitoun, Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Solar Energy, 2011. 85(11): pp.3036-3045.

DOI: 10.1016/j.solener.2011.09.002

Google Scholar

[17] Riffelmann, K. -J., A. Neumann, and S. Ulmer, Performance enhancement of parabolic trough collectors by solar flux measurement in the focal region. Solar Energy, 2006. 80(10): pp.1303-1313.

DOI: 10.1016/j.solener.2005.09.001

Google Scholar

[18] Schiricke, B., R. Pitz-Paal, E. Lupfert, K. Pottler, M. Pfander, K. -J. Riffelmann, and A. Neumann, Experimental Verification of Optical Modeling of Parabolic Trough Collectors by Flux Measurement. Journal of Solar Energy Engineering, 2009. 131(1): pp.011004-6.

DOI: 10.1115/1.3027507

Google Scholar

[19] García-Cortés, S., A. Bello-García, and C. Ordóñez, Estimating intercept factor of a parabolic solar trough collector with new supporting structure using off-the-shelf photogrammetric equipment. Applied Energy, 2012. 92(0): pp.815-821.

DOI: 10.1016/j.apenergy.2011.08.032

Google Scholar

[20] Zemax®, Optical Design Program, User's Manual. 2013, Radiant Zemax LLC, zemaxsupport@radiantzemax. com.

Google Scholar

[21] Buie, D., A.G. Monger, and C.J. Dey, Sunshape distributions for terrestrial solar simulations. Solar Energy, 2003. 74(2): pp.113-122.

DOI: 10.1016/s0038-092x(03)00125-7

Google Scholar

[22] Buie, D., C.J. Dey, and S. Bosi, The effective size of the solar cone for solar concentrating systems. Solar Energy, 2003. 74(5): pp.417-427.

DOI: 10.1016/s0038-092x(03)00156-7

Google Scholar

[23] Bauman, B.J. and H. Xiao, Gaussian quadrature for optical design with noncircular pupils and fields, and broad wavelength range. 2010: p. 76522S-76522S.

DOI: 10.1117/12.872773

Google Scholar

[24] Sheldon M, J., Analytical determination of the optical performance of practical parabolic trough collectors from design data. Solar Energy, 1987. 39(1): pp.11-21.

DOI: 10.1016/s0038-092x(87)80047-6

Google Scholar