Effect of Mechanically Created Pits Pattern for Direct Diamond Deposition on Stainless-Steel Surface

Article Preview

Abstract:

Direct diamond deposition on a steel surface has been considered very difficult. Recently, we found that high-quality diamond films can be deposited on the surface of stainless-steel X5CrNi 18-10 by drilling multiple regularly arranged pits without interlayers or seeding. The following two hypotheses (A) and (B) can be considered as the reason why a high-quality diamond film can be deposited: (A) unoxidized Cr and Ni exposed to the stainless-steel X5CrNi 18-10 surface prevent carbon diffusion into interior of the stainless-steel, resulting diamond core generation, (B) Surface geometry with regular roughness contributes to stress relaxation and delamination prevention. In the present study, those hypotheses have been examined by quantum chemistry calculation and experimental. For the quantum chemistry calculation, energy barrier and kinetic energy for a carbon atom intrudes into a model cluster has been calculated with an ab-initio computational chemistry software package, Gaussian. The calculation result has supported hypothesis (A). For the experiment, X5CrNi 18-10 stainless-steel substrates with different surface characteristics are prepared by using various mechanical machining methods and used in the direct deposition process for diamond with in-liquid plasma CVD. The experimental result has supported both hypothesis (A) and (B).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 354)

Pages:

3-14

Citation:

Online since:

December 2023

Export:

Price:

* - Corresponding Author

[1] Berrak Bulut, O. Tazegul, Murat Baydogan, The comparison of the sintering methods for diamond cutting tools, J. Achiev. Mater. Manuf. Eng. 76 (2016) 30–34. https://doi.org/.

DOI: 10.5604/17348412.1228631

Google Scholar

[2] E. Uhlmann, D. Hinzmann, Residual stress assessment during cutting tool lifetime of CVD-diamond coated indexable inserts, Procedia CIRP. 108 (2022) 799–804.

DOI: 10.1016/j.procir.2022.03.124

Google Scholar

[3] Z. Su, S. Zhang, J. Wu, L. lei Liu, Cutting performance evaluation of nickel-plated graphite Fe-based diamond saw blades, Diam. Relat. Mater. 114 (2021) 108344.

DOI: 10.1016/j.diamond.2021.108344

Google Scholar

[4] X. Kong, Z. Su, T. He, J. Wu, D. Wu, S. Zhang, Development and properties evaluation of diamond-containing metal composites for fused filament fabrication of diamond tool, Diam. Relat. Mater. 130 (2022) 109423.

DOI: 10.1016/j.diamond.2022.109423

Google Scholar

[5] K. Harano, T. Satoh, H. Sumiya, Cutting performance of nano-polycrystalline diamond, Diam. Relat. Mater. 24 (2012) 78–82.

DOI: 10.1016/j.diamond.2011.11.005

Google Scholar

[6] H. Toyota, S. Nomura, S. Mukasa, Y. Takahashi, S. Okuda, Diamond synthesis by plasma chemical vapor deposition in liquid and gas, Diam. Relat. Mater. 19 (2010) 418–422.

DOI: 10.1016/j.diamond.2009.12.018

Google Scholar

[7] R. Roy, Diamonds at low pressure, Nature. 325 (1987) 17–18.

DOI: 10.1038/325017a0

Google Scholar

[8] P. Bachmann, D. Leers, D. Wiechert, DIAMOND CHEMICAL VAPOUR DEPOSITION, J. Phys. IV Colloq. 02 (1991) C2-907-C2-913.

DOI: 10.1051/jp4:19912109

Google Scholar

[9] Ryoya Shiraishi, Hiromichi Toyota, Shinfuku Nomura, Kazuto Nakajima, Xia Zhu, Simultaneous Synthesis of Diamond and Hydrogen, Key Eng. Mater. 825 (2019) 71–76.

DOI: 10.4028/www.scientific.net/kem.825.77

Google Scholar

[10] D. Xiang, Z. Guo, L. Zhang, H. Feng, Preparation and cutting performance of ultra-smooth CVD composite diamond coated ladder-shape drilling tools, Diam. Relat. Mater. 81 (2018) 54–60.

DOI: 10.1016/j.diamond.2017.11.008

Google Scholar

[11] A. Contin, G. De Vasconcelos, D.M.I. Barquete, R.A. Campos, V.J. Trava-Airoldi, E.J. Corat, Laser cladding of SiC multilayers for diamond deposition on steel substrates, Diam. Relat. Mater. 65 (2016) 105–114.

DOI: 10.1016/j.diamond.2016.02.007

Google Scholar

[12] J.G. Buijnsters, P. Shankar, W. Fleischer, W.J.P. Van Enckevort, J.J. Schermer, J.J. Ter Meulen, CVD diamond deposition on steel using arc-plated chromium nitride interlayers, Diam. Relat. Mater. 11 (2002) 536–544.

DOI: 10.1016/S0925-9635(01)00628-8

Google Scholar

[13] K. Tsugawa, S. Kawaki, M. Ishihara, M. Hasegawa, Direct coating of nanocrystalline diamond on steel, Jpn. J. Appl. Phys. 51 (2012).

DOI: 10.1143/JJAP.51.090122

Google Scholar

[14] Li, A. Hirose, Direct coating of nanophase diamond films on steel substrate, Chem. Phys. Lett. 433 (2006) 150–153.

DOI: 10.1016/j.cplett.2006.11.042

Google Scholar

[15] X. Li, L. He, Y. Li, Q. Yang, Diamond deposition on iron and steel substrates: A review, Micromachines. 11 (2020).

DOI: 10.3390/MI11080719

Google Scholar

[16] V. Trava-Airoldi, E. Corat, D. Damm, A. Contin, D. Barquete, F. Barbieri, Interlayers Applied to CVD Diamond Deposition on Steel Substrate: A Review, Coatings. 7 (2017) 141.

DOI: 10.3390/coatings7090141

Google Scholar

[17] Shiraishi Ryoya, Toyota Hiromichi, Zhu Xia, Matsumoto Kengo, Nomura Shinfuku, A New Diamond Chemical Vapor Deposition Method on Steel Surface, J. Japan Inst. Energy. 101 (2022) 147–151.

DOI: 10.3775/jie.101.147

Google Scholar

[18] K. Kellermann, C. Bareiß, S.M. Rosiwal, R.F. Singer, Well adherent diamond coatings on steel substrates, Adv. Eng. Mater. 10 (2008) 657–660.

DOI: 10.1002/adem.200800060

Google Scholar

[19] R. Börner, M. Penzel, T. Junge, A. Schubert, Design of Deterministic Microstructures as Substrate Pre-Treatment for CVD Diamond Coating, Surfaces. 2 (2019) 497–519.

DOI: 10.3390/surfaces2030037

Google Scholar

[20] Hirohiko Adachi, Masaru Tsukada, Discrete Variational Xα Cluster Calculations. I. Application to Metal Clusters, J. Phys. Soc. Japan. 45 (1978) 875–883.

DOI: 10.1143/jpsj.45.875

Google Scholar

[21] I. Gaussian, Expanding the limits of computational chemistry, (2022). https://gaussian.com/ (accessed July 1, 2022).

Google Scholar

[22] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese- man, G. Scalmani, V. Barone, G.A. Petersson, Gaussian 16, revison C. 01, Gaussian, Inc., Wallingford CT, 2016.

Google Scholar

[23] K. Remya, C.H. Suresh, Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small non-covalent dimers? A benchmark study using gaussian09, J. Comput. Chem. 34 (2013) 1341–1353.

DOI: 10.1002/jcc.23263

Google Scholar

[24] J. Feng, Q. Guo, N. Song, H. Liu, H. Dong, Y. Chen, L. Yu, L. Dong, Density functional theory study on optical and electronic properties of co-doped graphene quantum dots based on different nitrogen doping patterns, Diam. Relat. Mater. 113 (2021) 108264.

DOI: 10.1016/j.diamond.2021.108264

Google Scholar

[25] Noushin Osouleddini, Maziar Noei, Employing metal-doped carbon nanocones for the drug delivery ofpurinethol anticancer: Insights from DFT calculations, Diam. Relat. Mater. (2022).

DOI: 10.1016/j.diamond.2022.109641

Google Scholar

[26] CONFLEX Corporation, Density Functional (DFT) Methods, (n.d.). https://www.conflex.co.jp/gaussian_support/dft.html (accessed June 20, 2022).

Google Scholar

[27] Owen, H. Louis, E.C. Agwamba, A.D. Udoikono, A.L.E. Manicum, Antihypotensive potency of p-synephrine: Spectral analysis, molecular properties and molecular docking investigation, J. Mol. Struct. 1273 (2023) 134233.

DOI: 10.1016/j.molstruc.2022.134233

Google Scholar

[28] M.A. Iron, T. Janes, Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange-Correlation Functionals: The MOBH35 Benchmark Database, J. Phys. Chem. A. 123 (2019) 3761–3781.

DOI: 10.1021/acs.jpca.9b01546

Google Scholar

[29] A. Austin, G.A. Petersson, M.J. Frisch, F.J. Dobek, G. Scalmani, K. Throssell, A density functional with spherical atom dispersion terms, J. Chem. Theory Comput. 8 (2012) 4989–5007.

DOI: 10.1021/ct300778e

Google Scholar

[30] Testoff, T. Aikawa, E. Tsung, E. Lesko, L. Wang, DFT studies of aggregation induced energy splitting and excitonic diversification in benzene and anthracene multimers, Chem. Phys. 562 (2022) 111641.

DOI: 10.1016/j.chemphys.2022.111641

Google Scholar

[31] P. Gautama, H. Toyota, Y. Iwamoto, X. Zhu, S. Nomura, S. Mukasa, Synthesizing diamond film on Cu, Fe and Si substrate by in-liquid microwave plasma CVD, Precis. Eng. 49 (2017) 412–420.

DOI: 10.1016/j.precisioneng.2017.04.003

Google Scholar

[32] M. Amaral, F. Almeida, A.J.S. Fernandes, F.M. Costa, F.J. Oliveira, R.F. Silva, The role of surface activation prior to seeding on CVD diamond adhesion, Surf. Coatings Technol. 204 (2010) 3585–3591.

DOI: 10.1016/j.surfcoat.2010.04.031

Google Scholar

[33] D.G. Lee, D.R. Gilbert, S.M. Lee, R.K. Singh, Surface composites: A novel method to fabricate adherent interfaces in thermal-mismatched systems, Compos. Part B Eng. 30 (1999) 667–674.

DOI: 10.1016/S1359-8368(99)00028-1

Google Scholar

[34] S. Fan, T. Kuang, W. Xu, Y. Zhang, Y. Su, S. Lin, D. Wang, H. Yang, K. Zhou, M. Dai, L. Wang, Effect of pretreatment strategy on the microstructure, mechanical properties and cutting performance of diamond coated hardmetal tools using HFCVD method, Int. J. Refract. Met. Hard Mater. 101 (2021) 105687.

DOI: 10.1016/j.ijrmhm.2021.105687

Google Scholar