Challenges in Tribometry for Warm and Hot Sheet Metal Forming of High Strength Aluminum with Tool Lubrication

Article Preview

Abstract:

For conventional sheet metal forming at room temperature, numerous tribometers were developed in the 20th century. At the present state of the art, unsolved issues for tribometry remain for temperature-supported forming processes of high strength aluminum (e.g. EN AW-7075), in which the sheet is heated to temperatures between 200 and 480 °C. The tribological design of these processes remains a major challenge, which needs to be addressed by investigations with adapted tribometers. In this study, a recently adapted strip drawing test for aluminum warm and hot forming is presented – including a newly developed strip heating unit, a die lubrication system and a die tempering system for efficient tribological testing. The contribution is completed with both, experimental results and a numerical investigation of temperature gradients in the strip drawing test. Finally, it is discussed whether transient process conditions of non-isothermal forming processes with die lubrication should be considered in tribometers for warm and hot sheet metal forming.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-102

Citation:

Online since:

February 2022

Export:

Price:

* - Corresponding Author

[1] Filzek J, Ludwig M, Groche P. Improved FEM simulation of sheet metal forming with friction modelling using laboratory tests. Proceedings of the IDDRG, Bilbao, Spain 2011:5–8.

Google Scholar

[2] Trzepiecinski T, Lemu HG. Recent Developments and Trends in the Friction Testing for Conventional Sheet Metal Forming and Incremental Sheet Forming. Metals 2020;10(1):47. https://doi.org/10.3390/met10010047.

DOI: 10.3390/met10010047

Google Scholar

[3] Reihle M. Verhalten des Gleitreibungskoeffizienten von Tiefziehblechen bei hohen Flächenpressungen: Dissertation. Stuttgart: Technische Hochschule Stuttgart; (1959).

Google Scholar

[4] Witthüser K-P. Untersuchung von Prüfverfahren zur Beurteilung der Reibungsverhältnisse beim Tiefziehen: Dissertation. Hannover: Universität Hannover; (1980).

Google Scholar

[5] Frontzek H. Beitrag zur Bestimmung der Reibungsverhältnisse in der Blechumformung: Berichte über Fertigungsforschung [Dissertation]. Darmstadt: Technische Hochschule Darmstadt; (1990).

Google Scholar

[6] Netsch T. Methode zur Ermittlung von Reibmodellen für die Blechumformung. Zugl.: Darmstadt, Techn. Hochsch., Diss., 1995. Aachen: Shaker; (1995).

Google Scholar

[7] Sniekers RR. Friction in deep drawing: Dissertation. Technische Universiteit Eindhoven; (1996).

Google Scholar

[8] Emmens W. Tribology of flat contacts and its application in deep drawing: Dissertation. Twente: University of Twente; (1997).

Google Scholar

[9] Filzek J. Kombinierte Prüfmethode für das Reib-, Verschleiß- und Abriebverhalten beim Tief- und Streckziehen. Zugl.: Darmstadt, Techn. Univ., Diss., 2004. Aachen: Shaker; (2004).

Google Scholar

[10] Zheng K, Politis DJ, Wang L, Lin J. A review on forming techniques for manufacturing lightweight complex—shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture 2018; 1(2): 55–80. https://doi.org/10.1016/j.ijlmm. 2018.03.006.

DOI: 10.1016/j.ijlmm.2018.03.006

Google Scholar

[11] Anyasodor G, Koroschetz C. Mass production-line and process route to enable the use of high strength aluminium alloy materials in car body engineering. IOP Conf. Ser.: Mater. Sci. Eng. 2018;418:12023. https://doi.org/10.1088/1757-899X/418/1/012023.

DOI: 10.1088/1757-899x/418/1/012023

Google Scholar

[12] Grohmann T. Forming of AMAG 7xxx Series Aluminium Sheet Alloys. AMAG rolling GmbH; (2016).

Google Scholar

[13] Ma W, Wang B-Y, Fu L, Zhou J, Huang M. Effect of friction coefficient in deep drawing of AA6111 sheet at elevated temperatures. Transactions of Nonferrous Metals Society of China 2015;25(7):2342–51. https://doi.org/10.1016/S1003-6326(15)63849-3.

DOI: 10.1016/s1003-6326(15)63849-3

Google Scholar

[14] Staeves J. Beurteilung der Topografie von Blechen im Hinblick auf die Reibung bei der Umformung. Zugl.: Darmstadt, Techn. Univ., Diss., 1998. Aachen: Shaker; (1998).

Google Scholar

[15] Bay N, Ceron E. Off-Line Testing of Tribo-Systems for Sheet Metal Forming Production. AMR 2014;966-967:3–20. https://doi.org/10.4028/www.scientific.net/AMR.966-967.3.

DOI: 10.4028/www.scientific.net/amr.966-967.3

Google Scholar

[16] Geiger M, Merklein M, Lechler J. Determination of tribological conditions within hot stamping. Prod. Eng. Res. Devel. 2008;2(3):269–76. https://doi.org/10.1007/s11740-008-0110-8.

DOI: 10.1007/s11740-008-0110-8

Google Scholar

[17] Merklein M, Degner J. Fertigung hochfester Aluminiumbauteile durch Umformen unter Abschreckbedingungen. Hannover: Europäische Forschungsgesellschaft für Blechverarbeitung e.V; (2018).

Google Scholar

[18] Ostermann F. Anwendungstechnologie Aluminium. Berlin, Heidelberg: Springer Berlin Heidelberg; (2014).

Google Scholar

[19] Degner J. Grundlegende Untersuchungen zur Herstellung hochfester Aluminiumblechbauteile in einem kombinierten Umform- und Abschreckprozess: FAU University Press; (2020).

Google Scholar

[20] Liu X, Ji K, Fakir OE, Fang H, Gharbi MM, Wang L. Determination of the interfacial heat transfer coefficient for a hot aluminium stamping process. Journal of Materials Processing Technology 2017;247:158–70. https://doi.org/10.1016/j.jmatprotec.2017.04.005.

DOI: 10.1016/j.jmatprotec.2017.04.005

Google Scholar

[21] Xiao W, Wang B, Zheng K, Zhou J, Lin J. A study of interfacial heat transfer and its effect on quenching when hot stamping AA7075. Archives of Civil and Mechanical Engineering 2018;18(3):723–30. https://doi.org/10.1016/j.acme.2017.12.001.

DOI: 10.1016/j.acme.2017.12.001

Google Scholar

[22] Degner J, Horn A, Merklein M. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys. J. Phys.: Conf. Ser. 2017;896:12055. https://doi.org/10.1088/1742-6596/896/1/012055.

DOI: 10.1088/1742-6596/896/1/012055

Google Scholar

[23] Dohda K, Boher C, Rezai-Aria F, Mahayotsanun N. Tribology in metal forming at elevated temperatures. Friction 2015;3(1):1–27. https://doi.org/10.1007/s40544-015-0077-3.

DOI: 10.1007/s40544-015-0077-3

Google Scholar

[24] Schell L, Groche P. In Search of the Perfect Sheet Metal Forming Tribometer. In: Daehn G, Cao J, Kinsey B, Tekkaya E, Vivek A, Yoshida Y, editors. Forming the Future. Cham: Springer International Publishing; 2021, p.81–96.

DOI: 10.1007/978-3-030-75381-8_7

Google Scholar

[25] VDA - Verband der Automobilindustrie e.V. VDA 230-213: Prüfverfahren für die Produktklassen Prelube, Prelube 2, Hotmelt, Spot lubricant. Frankfurt; (2008).

Google Scholar

[26] Mendiguren J, Argandona ES de, Galdos L. Hot stamping of AA7075 aluminum sheets. IOP Conf. Ser.: Mater. Sci. Eng. 2016;159:12026. https://doi.org/10.1088/1757-899X/159/1/012026.

DOI: 10.1088/1757-899x/159/1/012026

Google Scholar

[27] Zheng K, Dong Y, Dong H, Fernandez J, Dean TA. Investigation of the lubrication performance using WC: C coated tool surfaces for hot stamping AA6082. Procedia Engineering 2017; 207: 711–6. https://doi.org/10.1016/j.proeng.2017.10.1046.

DOI: 10.1016/j.proeng.2017.10.1046

Google Scholar

[28] Liu Y, Zhu Z, Wang Z, Zhu B, Wang Y, Zhang Y. Formability and lubrication of a B-pillar in hot stamping with 6061 and 7075 aluminum alloy sheets. Procedia Engineering 2017;207:723–8. https://doi.org/10.1016/j.proeng.2017.10.819.

DOI: 10.1016/j.proeng.2017.10.819

Google Scholar

[29] Myrold B, Jensrud O, Snilsberg KE. The Influence of Quench Interruption and Direct Artificial Aging on the Hardening Response in AA6082 during Hot Deformation and In-Die Quenching. Metals 2020;10(7):935. https://doi.org/10.3390/met10070935.

DOI: 10.3390/met10070935

Google Scholar

[30] Waanders D, Marangalou JH, Kott M, Gastebois S, Hol J. Temperature Dependent Friction Modelling: The Influence of Temperature on Product Quality. Procedia Manufacturing 2020; 47: 535–40. https://doi.org/10.1016/j.promfg.2020.04.159.

DOI: 10.1016/j.promfg.2020.04.159

Google Scholar