Direct Detection of Green-Synthesized Fe3O4 Magnetic Nanotag Using Double-Chip Configuration of Commercial Giant Magnetoresistance Sensor

Article Preview

Abstract:

The performance of a commercial GMR with a double-chip configuration has been investigated for detecting nanotag. Fe3O4 magnetic nanoparticles (MNPs) as tags were synthesized by co-precipitation method based on green synthesis using Moringa oleifera (MO) extract. Fe3O4 showed a soft ferromagnetic material and a magnetic saturation of 55.0 emu/g. MNPs-ethanol solution are dropped onto the surface of each chip of the sensing element. As a comparison, the performance of a single-chip configuration is also investigated. Obtained bias magnetic field used as a magnetic field sensing double-chip sensor is 3.8 Oe smaller than the single-chip sensor, which is 4.3 Oe, confirmed by the shift in the value of the first derivative order. Configuration of double-chip sensor in detecting Fe3O4 has a smaller LoD of 2.4 mg/mL compared to the single-chip configuration of 3.8 mg/mL. Therefore, Green-synthesized Fe3O4 as biocompatible magnetic tags in combination with commercial GMR sensors using double-chip configuration is promising for magnetic-based biosensor applications in driving more responsive detection and enabling portability by using a smaller energy source.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1114)

Pages:

3-8

Citation:

Online since:

February 2024

Export:

Price:

* - Corresponding Author

[1] V. Nabaei, R. Chandrawati, H. Heidari, Biosens. Bioelectron. 103 (2018) 69–86.

Google Scholar

[2] I. Ennen, D. Kappe, T. Rempel, C. Glenske, A. Hütten, Sensors (Switzerland) 16 (2016).

DOI: 10.3390/s16060904

Google Scholar

[3] Y.T. Chen, A.G. Kolhatkar, O. Zenasni, S. Xu, T.R. Lee, Biosensing Using Magnetic Particle Detection Techniques, 2017.

DOI: 10.3390/s17102300

Google Scholar

[4] M.A. Khan, J. Sun, B. Li, A. Przybysz, J. Kosel, Eng. Res. Express 3 (2021).

Google Scholar

[5] Y. Zhang, J. Xu, Q. Li, D. Cao, S. Li, AIP Adv. 9 (2019).

Google Scholar

[6] J. Xu, Q. Li, W. Zong, Y. Zhang, S. Li, J. Magn. Magn. Mater. 417 (2016) 25–29.

Google Scholar

[7] M. Yusefi, K. Shameli, O.S. Yee, S.Y. Teow, Z. Hedayatnasab, H. Jahangirian, T.J. Webster, K. Kuča, Int. J. Nanomedicine 16 (2021) 2515–2532.

DOI: 10.2147/ijn.s284134

Google Scholar

[8] M. Yusefi, K. Shameli, Z. Hedayatnasab, S.Y. Teow, U.N. Ismail, C.A. Azlan, R. Rasit Ali, Res. Chem. Intermed. 47 (2021) 1789–1808.

DOI: 10.1007/s11164-020-04388-1

Google Scholar

[9] R.M. Tumbelaka, N.I. Istiqomah, N. Mabarroh, E. Suharyadi, Solid State Phenom. 332 (2022) 91–99.

Google Scholar

[10] N. Mabarroh, T. Alfansuri, N.A. Wibowo, N.I. Istiqomah, R.M. Tumbelaka, E. Suharyadi, J. Magn. Magn. Mater. 560 (2022) 169645.

DOI: 10.1016/j.jmmm.2022.169645

Google Scholar

[11] E. Suharyadi, T. Alfansuri, L.S. Handriani, N.A. Wibowo, H. Sabarman, J. Mater. Sci. Mater. Electron. 32 (2021) 23958–23967.

DOI: 10.1007/s10854-021-06859-6

Google Scholar

[12] NA. Wibowo, Harsojo, E. Suharyadi, in: AIP Conf. Proc., American Institute of Physics Inc., 2021, p.020007.

Google Scholar

[13] H. Ardiyanti, N. Aji, N. Imani, J. Sci. Adv. Mater. Devices 8 (2023) 100556.

Google Scholar

[14] NA. Wibowo, H. Sabarman, E. Suharyadi, IEEE Sens. J. 22 (2022) 20093–20101.

Google Scholar

[15] S. Khashan, S. Dagher, N. Tit, A. Alazzam, I. Obaidat, Surf. Coatings Technol. 322 (2017) 92–98.

DOI: 10.1016/j.surfcoat.2017.05.045

Google Scholar

[16] M. Guan, X. Mu, H. Zhang, Y. Zhang, J. Xu, Q. Li, X. Wang, D. Cao, S. Li, J. Appl. Phys. 126 (2019).

Google Scholar

[17] J. Xu, Q. Li, X.Y. Gao, F.F. Leng, M. Lu, P.Z. Guo, G.X. Zhao, SD. Li, IEEE Trans. Magn. 52 (2016) 1–5.

Google Scholar

[18] X. cheng Sun, C. Lei, L. Guo, Y. Zhou, Microchim. Acta 183 (2016) 1107–1114.

Google Scholar