Crack Propagation Behaviour under Corrosion and Thermomechanical Loads

Article Preview

Abstract:

A significant number of high-performance engineering structures are repeatedly subjected to both thermal and mechanical loads, often in a combined fashion. However, because of the increase in the plasticity of metallic structures when they are loaded at high temperatures, the analysis become very complex. This presents a significant obstacle for the comprehension of both the growth of cracks and the thermo-mechanical fatigue performance of the material. Thermomechanical fatigue and thermal fatigue are characterized by external and internal constraining forces, respectively. The beginning and spread of thermal fatigue cracks are controlled by a variety of factors, including the modes of heating and cooling, the temperature range, the maximum temperature rates, and the holding times. The process of a crack beginning and the rate at which it spreads are both sped up when the temperature is raised. However, because of the development of powerful statistical learning algorithms as well as rapid advancements in computational power, there has been an increased adoption of machine learning approaches as well as other advanced computational analyses and numerical software for crack damage detection and damage severity. This has led to an increase in the use of these methods.

You might also be interested in these eBooks

Info:

Periodical:

Engineering Headway (Volume 1)

Pages:

37-45

Citation:

Online since:

November 2023

Export:

Price:

* - Corresponding Author

[1] Agbadua, S. A., Mgbemena, C. O., Mgbemena, C. E., & Chima, L. O, Thermal cycling effects on the fatigue behaviour of low carbon steel. Journal of Minerals & Materials Characterization & Engineering, 10(14), (2011), 1345-1357.

DOI: 10.4236/jmmce.2011.1014106

Google Scholar

[2] Akinlabi, O., Olowodaran Babatope, C., Alao Alice, O., Barnabas Abel, A., & Omole Sylvester, O, A Review: Thermomechanical Fatigue of Grey Cast Iron for Automobile Application and Effects of Alloying Additions. International Journal of Engineering Applied Sciences and Technology, 5(4), (2020), 2455-2143.

DOI: 10.33564/ijeast.2020.v05i04.003

Google Scholar

[3] Stefanescu, D. M., Alonso, G., & Suarez, R, Recent developments in understanding nucleation and crystallization of spheroidal graphite in iron-carbon-silicon alloys. Metals, 10(2), (2020), 221.

DOI: 10.3390/met10020221

Google Scholar

[4] Wang, M., Pang, J. C., Zhang, M. X., Liu, H. Q., Li, S. X., & Zhang, Z. F., Thermo- mechanical fatigue behavior and life prediction of the Al-Si piston alloy. Materials Science and Engineering: A, 715, (2018), 62-72

DOI: 10.1016/j.msea.2017.12.099

Google Scholar

[5] Wang, C. Q., Xiong, J. J., Shenoi, R. A., Liu, M. D., & Liu, J. Z., A modified model to depict corrosion fatigue crack growth behavior for evaluating residual lives of aluminum alloys. International Journal of Fatigue, 83, (2016) 280-287.

DOI: 10.1016/j.ijfatigue.2015.10.023

Google Scholar

[6] Wu, Z., Yang, M., & Zhao, K., Fatigue Crack Initiation and Propagation at High Temperature of New-Generation Bearing Steel. Metals, 11(1), (2021), 25. Retrieved from https://www.mdpi.com/2075-4701/11/1/25.

DOI: 10.3390/met11010025

Google Scholar

[7] Fleet, T., Kamei, K., He, F., Khan, M. A., Khan, K. A., & Starr, A, A Machine Learning Approach to Model Interdependencies between Dynamic Response and Crack Propagation. Sensors (Basel), 20(23), (2020).

DOI: 10.3390/s20236847

Google Scholar

[8] Loureiro-Homs, J., Gustafsson, D., Almroth, P., Simonsson, K., Eriksson, R., & Leidermark, D, Accounting for initial plastic deformation for fatigue crack growth predictions under TMF loading condition. International Journal of Fatigue, 136, (2020), 105569.

DOI: 10.1016/j.ijfatigue.2020.105569

Google Scholar

[9] Merhy, E., Rémy, L., Maitournam, H., & Augustins, L, Crack growth characterization of A356-T7 aluminum alloy under thermo-mechanical fatigue loading. Engineering Fracture Mechanics, 110, (2013), 99-112.

DOI: 10.1016/j.engfracmech.2013.03.019

Google Scholar

[10] Thomas, J.-J., Verger, L., Bignonnet, A., & Charkaluk, E., Thermomechanical design in the automotive industry. Fatigue & Fracture of Engineering Materials & Structures, 27(10), (2004), 887-895.

DOI: 10.1111/j.1460-2695.2004.00746.x

Google Scholar

[11] Ibrahim Alqahtani, Andrew Starr Muhammad Khan, Coupled Effects of Temperature and Humidity on Fracture Toughness of Al–Mg–Si–Mn Alloy Material, 16, 4066, (2023). https://doi.org/10.3390/ ma16114066.

DOI: 10.3390/ma16114066

Google Scholar

[12] Hosseini, V. A., Karlsson, L., Hurtig, K., Choquet, I., Engelberg, D., Roy, M. J., & Kumara, C, A novel arc heat treatment technique for producing graded microstructures through controlled temperature gradients. Materials & Design, 121, 11-23, (2017).

DOI: 10.1016/j.matdes.2017.02.042

Google Scholar

[13] Zhang, M. X., Pang, J. C., Meng, L. J., Li, S. X., Liu, Q. Y., Jiang, A. L., & Zhang, Z. F., Study on thermal fatigue behaviors of two kinds of vermicular graphite cast irons. Material Science and Engineering: A, 814, (2021), 141212.

DOI: 10.1016/j.msea.2021.141212

Google Scholar

[14] Gåård, A., Krakhmalev, P., & Bergström, J., Microstructural characterization and wear behavior of (Fe,Ni)–TiC MMC prepared by DMLS. Journal of Alloys and Compounds, 421(1), (2006) 166-171.

DOI: 10.1016/j.jallcom.2005.09.084

Google Scholar

[15] Ibrahim Alqahtani, Andrew Starr Muhammad Khan, Experimental and theoretical aspects of crack assisted failures of metallic alloys in corrosive environments – A review, Materials Today Proceedings, 66, (2022), 2530-2535.

DOI: 10.1016/j.matpr.2022.07.075

Google Scholar

[16] Loureiro-Homs, J., Gustafsson, D., Almroth, P., Simonsson, K., Eriksson, R., & Leidermark, D, Accounting for initial plastic deformation for fatigue crack growth predictions under TMF loading condition. International Journal of Fatigue, 136, (2020), 105569.

DOI: 10.1016/j.ijfatigue.2020.105569

Google Scholar

[17] Khare, H. S., & Burris, D. L, Surface and Subsurface Contributions of Oxidation and Moisture to Room Temperature Friction of Molybdenum Disulfide. Tribology Letters, 53(1), (2014), 329-336.

DOI: 10.1007/s11249-013-0273-0

Google Scholar

[18] Shahrum Abdullah, Sabah M. Beden, Ahmad Kamal Ariffin, Zulkifli Mohd Nopiah, Effects of Load Sequence on Fatigue Crack Growth in Pressure Vessels, Advanced Materials Research, 162, (2010), 1217-1222.

DOI: 10.4028/www.scientific.net/amr.160-162.1217

Google Scholar

[19] Burns, J. T., & Gangloff, R. P, Effect of Low Temperature on Fatigue Crack Formation and Microstructure-Scale Growth from Corrosion Damage in Al-Zn-Mg-Cu. Metallurgical and Materials Transactions A, 44, (2013), 2083-2105.

DOI: 10.1007/s11661-012-1374-3

Google Scholar

[20] Mazlan, S., Yidris, N., Koloor, S. S. R., & Petrů, M, Experimental and Numerical Analysis of Fatigue Life of Aluminum Al 2024-T351 at Elevated Temperature. Metals, 10(12),(2020), 1581.

DOI: 10.3390/met10121581

Google Scholar

[21] Kamei, K., & Khan, M. A., Current challenges in modelling vibrational fatigue and fracture of structures: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2), 77, (2021).

DOI: 10.1007/s40430-020-02777-6

Google Scholar

[22] Xu, J., Zhang, Z., & Wu, T., Residual fatigue lives assessment of riveted lap joints based on a crack growth model. Structures, 34, (2021) 1383-1392. doi:https://doi.org/.

DOI: 10.1016/j.istruc.2021.08.068

Google Scholar

[23] Ramesh, C. S., Keshavamurthy, R., Subramanian, G., & Bharath, K. R, High Cycle Fatigue Life Prediction of Al6061-TiB2 In-situ Composites. Procedia Materials Science, 6, (2014), 1455- 1469.

DOI: 10.1016/j.mspro.2014.07.125

Google Scholar

[24] Liang, Y.-J., Dávila, C. G., & Iarve, E.V., A reduced-input cohesive zone model with regularized extended finite element method for fatigue analysis of laminated composites in Abaqus Composite Structures, 275, 114494, (2021).

DOI: 10.1016/j.compstruct.2021.114494

Google Scholar

[25] Natkowski, E., Durmaz, A. R., Sonnweber-Ribic, P., & Münstermann, S, Fatigue lifetime prediction with a validated micromechanical short crack model for the ferritic steelEN 1.4003. International Journal of Fatigue, 152, (2021), 106418.

DOI: 10.1016/j.ijfatigue.2021.106418

Google Scholar

[26] Chikmath, L., Ramanath, M. N., & Dattaguru, B, Fatigue Life Benefits of Cold Worked Holes in Fastener Joints. Procedia Structural Integrity, 14, (2019), 922-929.

DOI: 10.1016/j.prostr.2019.07.072

Google Scholar

[27] Chang, K.-H., Project S3 Structural FEA and Fatigue Analysis Using SolidWorks Simulation. In K.-H. Chang (Ed.), Product Performance Evaluation with CAD/CAE, Boston: Academic Press. (2013), 481-532.

DOI: 10.1016/b978-0-12-398460-9.15004-8

Google Scholar

[28] Moshtaghzadeh, M., Bakhtiari, A., Izadpanahi, E., & Mardanpour, P, Artificial Neural Network for the prediction of fatigue life of a flexible foldable origami antenna with Kresling pattern. Thin-Walled Structures, 174, (2022), 109160.

DOI: 10.1016/j.tws.2022.109160

Google Scholar

[29] Sahoo, A., Chandra Nayak, R., Senapati, A. K., & Roul, M. K, Validation of experimental results with theoretical by using ANSYS workbench on vertical tube subjected to natural convection heat transfer without internal obstacles. Materials Today: Proceedings, 52, (2022), 1348-1353.

DOI: 10.1016/j.matpr.2021.11.080

Google Scholar

[30] Burns, J. T., Jones, J. J., Thompson, A. D., & Locke, J. S., Fatigue crack propagation of aerospace aluminum alloy 7075-T651 in high altitude environments. International Journal of Fatigue, 106, (2018), 196-207.

DOI: 10.1016/j.ijfatigue.2017.09.017

Google Scholar