Fabrication and Characterization of Colorant-Doped Glass Produced with Local Sand of Nong Phok Site

Article Preview

Abstract:

It is well-known that silica sand is a special type of quartz sand that is suitable for glass fabrication due to its high silica content and low content of iron oxide. In this work, chemical analysis has been carried out on a sand sample from the Nong Phok site, Roi Et province, northeastern Thailand. The geological resources show that this site possesses a surface-to-near surface sand deposit. The grain of fine white sand consists of clear crystals. The grain shape is mainly angular-to-round. Chemical analysis shows that the sand contains more than 99 wt% silica and small amounts of Al, Ca, Ti, and Zr which is in agreement with international standards for glass production. The sand has been used as raw material for the fabrication of soda-lime, lead crystal, and lead-free high refractive index glasses. The colorless and various colored glass products have been satisfactorily used in domestic art and glass manufacturers which promotes local employment and economics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-58

Citation:

Online since:

January 2024

Export:

Price:

* - Corresponding Author

[1] National Glass Association, Glass Production Guide: Production of the US Glass Association. (1965).

Google Scholar

[2] British Standard Institution, BS 2975 British Standard Methods for Sampling and Analysis of glass making sand. (1988).

Google Scholar

[3] P. Dararutana, N. Sirikulrat, Fabrication of lead-free high refractive index glass using local raw materials, KMITL Sci. J., 6 (2006) 541-545.

DOI: 10.4028/www.scientific.net/amr.39-40.257

Google Scholar

[4] P. Dararutana, P. Chetanachan, P. Wathanakul, N. Sirikulrat, Investigations on local quartz sand for application in glass industry, Advances in Geosciences 13 (2007) 23-29.

DOI: 10.1142/9789812836182_0003

Google Scholar

[5] P. Dararutana, P. Chetanachan, J. Dutchaneephet, N. Sirikulrat, Lead-free high refractive index glasses produced from local raw materials, Advanced Materials Research 39-40 (2008) 257-260.

DOI: 10.4028/www.scientific.net/amr.39-40.257

Google Scholar

[6] P. Dararutana, N. Sirikulrat, Lead-free high refractive index glass using local Thai sands, Songklanakarin J. Sci. Technol. 32 (2010) 315-319.

Google Scholar

[7] S. Pongkrapan, P. Dararutana, P. Wathanakul, Dielectric property of barium-based glasses fabricated using Thailand resource, Integrated Ferroelectrics 114 (2010) 59-63.

DOI: 10.1080/10584587.2010.488188

Google Scholar

[8] S. Pongkrapan, S. Yamban, K. Won-in, P. Dararutana, N. Sirikulrat, Optical, dielectric and X-ray adsorption properties of soda-based glass fabricated from Thai quartz sands doped with iron oxide, Materials Science Forum 663-665 (2011) 385-388.

DOI: 10.4028/www.scientific.net/msf.663-665.385

Google Scholar

[9] K. Won-in, P. Dararutana, Dielectric property of barium-bearing glasses based on Thai resources doped with Nd3+, Advanced Materials Research 216 (2011) 124-127.

DOI: 10.4028/www.scientific.net/amr.216.124

Google Scholar

[10] K. Won-in, J. Dutchaneephet, S. Pongkrapan, N. Sirikulrat, P. Dararutana, Analysis of barium-bearing glass doped with chromium oxide, Materials Science Forum 663-665 (2011) 943-946.

DOI: 10.4028/www.scientific.net/msf.663-665.943

Google Scholar

[11] C. Boonruang, K. Won-in, P. Dararutana, Physical and optical properties of barium-based glass doped with Nd3+ prepared from Thai raw materials, Materials Today: Proceeding 66 (2022) 3125-3128.

DOI: 10.1016/j.matpr.2022.07.459

Google Scholar

[12] S. Ali, J. Grins, S. Esmaeilzadeh, Properties of high nitrogen content mixed alkali earth oxynitride glasses (AExCa1−x)1.2(1)SiO1.9(1)N0.86(6), AE=Mg, Sr, Ba, J. Non-Cryst. Solids 355 (2009) 1259-1263.

DOI: 10.1016/j.jnoncrysol.2009.04.036

Google Scholar

[13] R. Limbach, B.P. Rodrigues, L. Wondraczek, Strain-rate sensitivity of glasses, J Non-Cryst. Solids 404 (2014) 124-134.

DOI: 10.1016/j.jnoncrysol.2014.08.023

Google Scholar

[14] S. Ali, B. Jonson, M.J. Pomeroy, S. Hampshire, Issues associated with the development of transparent oxynitride glasses, Ceram. Int. 41 (2015) 3345-3354.

DOI: 10.1016/j.ceramint.2014.11.030

Google Scholar

[15] A. Thieme, D. Möncke, R. Limbach, S. Fuhrmann, E.I. Kamitsos, L. Wondraczek, Structure and properties of alkali and silver sulfophosphate glasses, J. Non-Cryst. Solids 410 (2015) 142-150.

DOI: 10.1016/j.jnoncrysol.2014.11.029

Google Scholar

[16] J.O. Isard, D. Priestly, The effect of flow rate in chemical durability tests, Phys. Chem. Glasses 26 (1985) 221-222.

Google Scholar

[17] R.A. Vilarigues, R.C. da Silva, The effect of Mn, Fe and Cu ions on potash-glass corrosion, J. Non-Cryst. Solids 355 (2009) 1630-1637.

DOI: 10.1016/j.jnoncrysol.2009.05.051

Google Scholar

[18] R.A. Rahimi, G. Raisali, S.K. Sadmezhaad, A. Alipour, Chemical corrosion and gamma-ray attenuation properties of Zr and Ti containing lead silicate glasses, J. Nucl. Mater. 385 (2009) 527-532.

DOI: 10.1016/j.jnucmat.2008.12.046

Google Scholar

[19] R.H. Doremus, Diffusion-controlled reaction of water with glass, J. Non-Cryst. Solids 55 (1983) 143-147.

DOI: 10.1016/0022-3093(83)90014-5

Google Scholar

[20] R.G. Newton, The durability of glass - A review, Glass Technol. 26 (1985) 21-38.

Google Scholar

[21] A. Pual, Chemistry of Glasses, second ed., Chapman & Hall, New York, 1990.

Google Scholar

[22] R.H. Doremus, Glass Science, second ed., Wiley, New York, 1994.

Google Scholar

[23] J.E. Shelby, Introduction to Glass Science and Technology, The Royal Society of Chemistry, Cambridge, 2005.

Google Scholar

[24] A.K. Varshneya, J.C. Mauro, Fundamentals of Inorganic Glasses, Elsevier, Amsterdam, 2019.

Google Scholar

[25] M.D. Bardi, H. Hutter, M. Schreiner, R. Bertoncello, Potash-lime-silica glass: Protection from weathering, Heritage Science 3 (2015) 1-9.

DOI: 10.1186/s40494-015-0051-4

Google Scholar

[26] W. Deng, J. Cheng, P. Tian, M. Wang, Chemical durability and weathering resistance of canasite based glass and glass-ceramics, J. Non-Cryst. Solids 358 (2012) 2847-2854.

DOI: 10.1016/j.jnoncrysol.2012.07.003

Google Scholar

[27] E. Meechoowas, P. Jampeerung, K. Tapasa, U. Pantulap, T. Jitwatcharakomol, Glass batch modification to improve the weathering resistance in soda-lime silicate glass, Key Engineering Materials 798 (2019) 206-211.

DOI: 10.4028/www.scientific.net/kem.798.206

Google Scholar

[28] F.H. El-Batal, E.M. Khalil, Y.M. Handy, H.M. Zidan, M.S. Aziz, A.M. Abdelghany, FTIR spectral analysis of corrosion mechanisms in soda lime silica glasses doped with transition metal oxides, Silicon 2 (2010) 41-47.

DOI: 10.1007/s12633-010-9037-8

Google Scholar