Inorganic Nanocarriers: Surface Functionalization, Delivery Utility for Natural Therapeutics - A Review

Article Preview

Abstract:

Inorganic nanocarriers for a decade have increased interest in nanotechnology research platform as versatile drug delivery materials. The utility of the inorganic nanocarriers for delivery of therapeutic agents is attributed to their unique properties such as magnetic, photocatalytic nature and the ability to exhibit surface functionalization. Herein, we review the surface functionalization and delivery utility for natural therapeutics exhibited by inorganic nanocarriers mostly focusing on their magnetic, photocatalytic and the plasmonic properties. The review also highlights the influence of electronic property of inorganic surface on functionalization of ligand based natural therapeutic agents. Improvement of stability and therapeutic potential by formation of nanocomposites are detailed. Furthermore, we suggest improvement strategies for stability and toxicity reduction of inorganic nanoparticles that would potentially make them useful for clinical application as therapeutic delivery tools for treatment of various diseases.

You might also be interested in these eBooks

Info:

Pages:

81-96

Citation:

Online since:

August 2022

Export:

Price:

* - Corresponding Author

[1] R.Ladj, A. Bitar, M.Eissa,Y. Mugnier, R.Le Dantec, H. Fessi, Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications,J Mater Chem B . 10 (2013)1381-96.

DOI: 10.1039/c2tb00301e

Google Scholar

[2] S.Chen, X.Hao , X.Liang, Q,Zhang, C.Zhang ,G, Zhou, Inorganic nanomaterials as carriers for drug delivery, J. biomed. nanotechnol. 1(2016)1-27.

DOI: 10.1166/jbn.2016.2122

Google Scholar

[3] P.Pandey ,M. Dahiya, A brief review on inorganic nanoparticles. J Crit Rev.3(2016)18-26.

Google Scholar

[4] K.Varaprasad M.M. Yallapu, D.Núñez, P.Oyarzún, M. López, T.Jayaramudu, Generation of engineered core–shell antibiotic nanoparticles,RSC Adv.15 (2019)8326-32.

DOI: 10.1039/c9ra00536f

Google Scholar

[5] A.Abdal Dayem, M.K. Hossain, S.B. Lee, K.Kim, S.K. Saha, G.M Yang G, The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles, Int.J.Mol.Sci.1 (2017)120.

DOI: 10.3390/ijms18010120

Google Scholar

[6] A.Hatamie, A.Khan, M.Golabi, A.P. Turner, V.Beni, W.C. Mak, Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material, Langmuir. 39(2015)10913-21.

DOI: 10.1021/acs.langmuir.5b02341

Google Scholar

[7] V.Marassi, L. Di Cristo, S.G.I Smith, S. Ortelli, M.Blosi, A.L. Costa, Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents, R Soc Open Sci. 1(2018)171113.

DOI: 10.1098/rsos.171113

Google Scholar

[8] N.Beyth, Y.Houri-Haddad, A. Domb , W.Khan, R. Hazan, Alternative antimicrobial approach: nano-antimicrobial materials. Evid. basedComplement.Altern. 2015;(2015).

DOI: 10.1155/2015/246012

Google Scholar

[9] R.Javed, M. Zia, S.Naz, S.O. Aisida, Ain Nu, Q.Ao,Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J. Nanobiotechnology. 1(2020)172.

DOI: 10.1186/s12951-020-00704-4

Google Scholar

[10] A.Ojha. Nanomaterials for removal of waterborne pathogens: opportunities and challenges. Waterborne Pathogens, Elsevier. (2020) 385-432.

DOI: 10.1016/b978-0-12-818783-8.00019-0

Google Scholar

[11] J.M. Montenegro, V. Grazu, A. Sukhanova, S. Agarwal, J.Fuente, I. Nabiev, Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery, Adv.Drug.Deliv.Rev. (2012) 65.

DOI: 10.1016/j.addr.2012.12.003

Google Scholar

[12] H.Agarwal, S.Menon , S.V. Kumar, S. Rajeshkumar, Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route, Chem.biol interact. 286(2018)60-70.

DOI: 10.1016/j.cbi.2018.03.008

Google Scholar

[13] Y.Zhang , T.R Nayak, H. Hong,W. Cai, Biomedical applications of zinc oxide nanomaterials, Curr. Mol. Med. 10(2013)1633-45.

Google Scholar

[14] J.L. Venkataraju, R.Sharath, M. Chandraprabha, E.Neelufar, A. Hazra, M.Patra, Synthesis, characterization and evaluation of antimicrobial activity of zinc oxide nanoparticles, J.Biochem.Technol. 5(2014)151-4.

Google Scholar

[15] Y.N. Slavin, J.Asnis, U.O. Häfeli, H.Bach, Metal nanoparticles: understanding the mechanisms behind antibacterial activity, J.Nanobiotechnology. 1(2017)1-20.

DOI: 10.1186/s12951-017-0308-z

Google Scholar

[16] S.Yin, J.Liu, Y.Kang, Y. Lin, D.Li, L.Shao L,Interactions of nanomaterials with ion channels and related mechanisms,Br. J. Pharmacol. 176(2019)3754-74.

DOI: 10.1111/bph.14792

Google Scholar

[17] M. Arakha, M. Saleem, B.C. Mallick, S. Jha, The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle, Sci.Rep. 5(2015)9578.

DOI: 10.1038/srep09578

Google Scholar

[18] J.Baranauskaite, G. Duman, G. Corapcıoğlu, A. Baranauskas, A.Taralp, L.Ivanauskas, Liposomal incorporation to improve dissolution and stability of rosmarinic acid and carvacrol extracted from Oregano (O. onites L.), BioMed. Res. Int. (2018).

DOI: 10.1155/2018/6147315

Google Scholar

[19] M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Photocatalysis and bandgap engineering using ZnO nanocomposites, Adv . Mater. Sci. Eng. (2015).

DOI: 10.1155/2015/934587

Google Scholar

[20] L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int.J. Nanomedicine. (2017)12:1227.

DOI: 10.2147/ijn.s121956

Google Scholar

[21] K. Hubenko, S. Yefimova, T. Tkacheva, P. Maksimchuk,I. Borovoy, V. Klochkov, Reactive oxygen species generation in aqueous solutions containing GdVO 4: Eu 3+ nanoparticles and their complexes with methylene blue, Nanoscale Res. lett.1(2018)1-9.

DOI: 10.1186/s11671-018-2514-5

Google Scholar

[22] V. Lobo, A. Patil, A.Phatak, N. Chandra , Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn Rev. 8(2010)118.

DOI: 10.4103/0973-7847.70902

Google Scholar

[23] M. Kundu, P. Sadhukhan, N, Ghosh, S.Chatterjee, P. Manna, J. Das J, pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy, J.Adv.Res 18(2019)161-72.

DOI: 10.1016/j.jare.2019.02.036

Google Scholar

[24] S. Shome, A.D. Talukdar, S.Tewari, S. Choudhury, M.K. Bhattacharya, H. Upadhyaya, Conjugation of micro/nanocurcumin particles to ZnO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia coli and Staphylococcus aureus, Biotechnol. Appl. Biochem. 3(2021)603-15.

DOI: 10.1002/bab.1968

Google Scholar

[25] P. Khadka, J.Ro, H.Kim, I.Kim, J.T. Kim , H. Kim, Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability, A.J. Pharm Sci. 6(2014)304-16.

DOI: 10.1016/j.ajps.2014.05.005

Google Scholar

[26] S.B. Ghaffari, M.H. Sarrafzadeh, Z. Fakhroueian, S. Shahriari, M.R. Khorramizadeh, Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: synthesis, characterization, and anticancer assessment, Mater.Sci. Eng: C. 79(2017)465-72.

DOI: 10.1016/j.msec.2017.05.065

Google Scholar

[27] J. Lee,K.H Choi, J. Min,H.J Kim, J.P. Jee, B.J Park, Functionalized ZnO nanoparticles with gallic acid for antioxidant and antibacterial activity against methicillin-resistant S. aureus, Nanomaterials. 11(2017)365.

DOI: 10.3390/nano7110365

Google Scholar

[28] K.H. Choi, K.C. Nam, S.Y. Lee, G. Cho, J.S. Jung, H.J. Kim H-J, Antioxidant potential and antibacterial efficiency of caffeic acid-functionalized ZnO nanoparticles, Nanomaterials. 6(2017)148.

DOI: 10.3390/nano7060148

Google Scholar

[29] S. Ferraris, X. Zhang, E. Prenesti, I. Corazzari, F.Turci , M.Tomatis, Gallic acid grafting to a ferrimagnetic bioactive glass-ceramic, J. Non-Cryst. Solids.432( 2016)167-75.

DOI: 10.1016/j.jnoncrysol.2015.05.023

Google Scholar

[30] S.A. Rajan, A. Khan, S.Asrar, H.Raza, R.K. Das, N.K. Sahu, Synthesis of ZnO/Fe(3)O(4)/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus, IET nanobiotechnol. 7(2019)682-7.

DOI: 10.1049/iet-nbt.2018.5330

Google Scholar

[31] R.Da, M. Nayak, G.C. Sahoo, K. Pandey, M. Chawla-Sarkar, V. Das V, Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus. J.Infect. Chemother, (2019).

DOI: 10.1016/j.jiac.2018.12.006

Google Scholar

[32] P. Guardia, A. Riedinger, H. Kakwere, F. Gazeau, T.Pellegrino, Magnetic nanoparticles for magnetic hyperthermia and controlled drug delivery, Edited by Daniel Ruiz-Molina, Fernando Novio, and Claudio Roscini. (2015).

DOI: 10.1002/9783527675821.ch06

Google Scholar

[33] E. Cazares-Cortes, S. Cabana ,C. Boitard ,E. Nehlig , N. Griffete , J. Fresnais J, Recent insights in magnetic hyperthermia: From the hot-spot, effect for local delivery to combined magneto-photo-thermia using magneto-plasmonic hybrids, Adv. Drug deliv. Rev. 138(2019)233-46.

DOI: 10.1016/j.addr.2018.10.016

Google Scholar

[34] J.H. Lee , R. Ivkov, R. Blumenthal , Magnetically triggered drug release from Liposome Embedded gel, J. Nanomedicine Biotherapeutic Discov. 4(2014)1.

DOI: 10.4172/2155-983x.1000130

Google Scholar

[35] U.Martens, U.Janke, S. Möller , D. Talbot, A. Abou-Hassan , M. Delcea ,Interaction of fibrinogen–magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. Nanoscale. 38(2020)19918-30.

DOI: 10.1039/d0nr04181e

Google Scholar

[36] D.R.K. Weerasuriya, S.Bhakta,K. Hiniduma, C.K. Dixit, M. Shen, Z.Tobin, Magnetic Nanoparticles with Surface Nanopockets for Highly Selective Antibody Isolation, ACS. Appl.Bio Mater. 8(2021)6157-66.

DOI: 10.1021/acsabm.1c00502

Google Scholar

[37] S. Rastogi , J. Jabal, H. Zhang , C. Gibson, K.Haler, Q. You Q, Antibody@Silica Coated Iron Oxide Nanoparticles: Synthesis, Capture of E.coli and Sers Titration of Biomolecules with Antibacterial Silver Colloid, J. Nanomed.Nanotechnol. 2(2011)1000121.

DOI: 10.4172/2157-7439.1000121

Google Scholar

[38] A.K. Kovach , J.M. Gambino , V.Nguyen , Z.Nelson ,T. Szasz , J.Liao J, Prospective Preliminary In Vitro Investigation of a Magnetic Iron Oxide Nanoparticle Conjugated with Ligand CD80 and VEGF Antibody As a Targeted Drug Delivery System for the Induction of Cell Death in Rodent Osteosarcoma Cells, BioResearch Open Access. 1(2016)299-307.

DOI: 10.1089/biores.2016.0020

Google Scholar

[39] X.G. Liu ,L. Zhang,S. Lu , D.Q. Liu, L.X. Zhang , X.L. Yu , Multifunctional Superparamagnetic Iron Oxide Nanoparticles Conjugated with Aβ Oligomer-Specific scFv Antibody and Class A Scavenger Receptor Activator Show Early Diagnostic Potentials for Alzheimer's Disease, Int. J.Nanomedicine. 15(2020)4919-32.

DOI: 10.2147/ijn.s240953

Google Scholar

[40] G.Sanità, B.Carrese, A.Lamberti, Nanoparticle Surface Functionalization: How to Improve Biocompatibility and Cellular Internalization, Front. mol. biosci. 7(2020)381.

DOI: 10.3389/fmolb.2020.587012

Google Scholar

[41] S. Sherin, S. Balachandran , A. Abraham , Curcumin incorporated titanium dioxide nanoparticles as MRI contrasting agent for early diagnosis of atherosclerosis- rat model, Vet.Anim. Sci. 10(2020)100090.

DOI: 10.1016/j.vas.2020.100090

Google Scholar

[42] V.J. Sawant, R. Kupwade, Functionalization of TiO2 nanoparticles and curcumin loading for enhancement of biological activity, Der Pharm. Lett. 7(2015)37-44.

Google Scholar

[43] S. Wang, B.B. Zhu, D.Z. Li, X.Z. Fu , L. Shi, Preparation and characterization of TIO2/SPI composite film, Mater.Lett. 83(2012)42–5.

Google Scholar

[44] Q. He, Y. Huang, B. Lin, S. Wang, A nanocomposite film fabricated with simultaneously extracted protein-polysaccharide from a marine alga and TiO2nanoparticles, J. Appl Phycol. 29(2016)1541-52.

DOI: 10.1007/s10811-016-1030-1

Google Scholar

[45] L.M. Anaya-Esparza, Z. Villagrán-de la Mora , N. Rodríguez-Barajas, T. Sandoval-Contreras,K. Nuño, D.A. López-de la Mora, Protein–TiO2: A Functional Hybrid Composite with Diversified Applications, Coatings.12( 2020).

DOI: 10.3390/coatings10121194

Google Scholar

[46] Y. He,Y. Zhang,X. Cai, S. Wang ,Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties, Int. J. biol.Macromol.macromol. 84(2016)153-60.

DOI: 10.1016/j.ijbiomac.2015.12.012

Google Scholar

[47] X. Fan , K.Chen , X.He , N. Li, J.Huang, K. Tang, Nano-TiO2/collagen-chitosan porous scaffold for wound repairing, Int.J. Biol. Macromol. 91(2016)15-22.

DOI: 10.1016/j.ijbiomac.2016.05.094

Google Scholar

[48] R. Viter, A. Tereshchenko, V.Smyntyna , J.Ogorodniichuk, N.Starodub, R. Yakimova, Toward development of optical biosensors based on photoluminescence of TiO2 nanoparticles for the detection of Salmonella, Sensors and Actuators B: Chemical. 252(2017)95-102.

DOI: 10.1016/j.snb.2017.05.139

Google Scholar

[49] B. Buszewski, K. Rafiſska, P. Pomastowski, J. Walczak, A. Rogowska, Novel aspects of silver nanoparticles functionalization, Colloids and Surfaces A: Colloids. Surf. A .Physicochem. Eng. Asp. 506(2016)170-8.

DOI: 10.1016/j.colsurfa.2016.05.058

Google Scholar

[50] A.N. Brown, K. Smith, T.A. Samuels ,J. Lu, S.O. Obare, M.E. Scott, Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus, Appl Environ Microbiol. 78(2012)2768-74.

DOI: 10.1128/aem.06513-11

Google Scholar

[51] A. Loiseau, Asila, G. Boitel-Aullen, M. Lam, Salmain, S. Boujday, Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing, Biosensors. (2019)9-78.

DOI: 10.3390/bios9020078

Google Scholar

[52] L. Loan Khanh, N. Thanh Truc, N. Tan Dat, N. Thi Phuong Nghi, V. van Toi, N. Thi Thu Hoai N, Gelatin-stabilized composites of silver nanoparticles and curcumin: characterization, antibacterial and antioxidant study, Sci Technol Adv Mater.1( 2019)276-90.

DOI: 10.1080/14686996.2019.1585131

Google Scholar

[53] R. Badhwar, B. Mangla, Y.R. Neupane, Quercetin loaded silver nanoparticles in hydrogel matrices for diabetic wound healing.Nanotechnol. 32(2021)50.

DOI: 10.1088/1361-6528/ac2536

Google Scholar

[54] N. Kumar, L.S.B. Upadhyay , Facile and green synthesis of highly stable l-cysteine functionalized copper nanoparticles, Appl. Surf Sci.385( 2016)225-33.

DOI: 10.1016/j.apsusc.2016.05.125

Google Scholar

[55] A. Khalid, P. Ahmad, A.I. Alharthi, S. Muhammad, M.U. Khandaker, M.R.I. Faruque MRI, Synergistic effects of Cu-doped ZnO nanoantibiotic against Gram-positive bacterial strains. PloS one. 5(2021).

DOI: 10.1371/journal.pone.0251082

Google Scholar

[56] S. Mathew, P.Ganguly, S.Rhatigan, V.Kumaravel, C.Byrne, S.J. Hinder, Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity, Appl. Sci. 11(2018).

DOI: 10.26434/chemrxiv.7159733

Google Scholar

[57] Q. Xu, Y. Zhao, J.Xu, J.J. Zhu, Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor, Sensors and Actuators B: Chemical. 114(2006) 379-86.

DOI: 10.1016/j.snb.2005.06.005

Google Scholar

[58] H. Li , Q. Chen, J. Zhao, K. Urmila, Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles, Sci.Rep. 1(2015)11033.

DOI: 10.1038/srep11033

Google Scholar

[59] A.M. Brezoiu, L.Bajenaru, D. Berger, R.A. Mitran, M. Deaconu, D. Lincu, Effect of Nanoconfinement of Polyphenolic Extract from Grape Pomace into Functionalized Mesoporous Silica on Its Biocompatibility and Radical Scavenging Activity, Antioxidants. 8(2020)9.

DOI: 10.3390/antiox9080696

Google Scholar

[60] V. Cotea, C. Luchian, N. Bilba, N. Marius, Mesoporous silica SBA-15, a new adsorbent for bioactive polyphenols from red wine, Anal. Chim. Acta. 5(2012)180-5.

DOI: 10.1016/j.aca.2011.10.019

Google Scholar

[61] M. Cazzola, I.Corazzari , E. Prenesti , E. Bertone , E. Vernè , S. Ferraris, Bioactive glass coupling with natural polyphenols: Surface modification, bioactivity and anti-oxidant ability, Appl. Surf. Sci. 367(2016)237-48.

DOI: 10.1016/j.apsusc.2016.01.138

Google Scholar

[62] D.S. Hsieh, H.C. Lu, C.C. Chen, C.J. Wu, M.K. Yeh, The preparation and characterization of gold-conjugated polyphenol nanoparticles as a novel delivery system, Int. J. Nanomedicine. 7(2012)1623.

DOI: 10.2147/ijn.s30060

Google Scholar

[63] P. Zheng, B. Zhang, B. Jin, W. Guan,B. Bai, S. Dai. Synergistic enhancement in antibacterial activity of core/shell/shell SiO2/ZnO/Ag3PO4 nanoparticles. ChemNanoMat. 2018;4(9):972-81.

DOI: 10.1002/cnma.201800195

Google Scholar

[64] L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T.d. Lima, A.C.B. Delbem, D.R. Monteiro, Iron oxide nanoparticles for biomedical applications: a perspective on synthesis, drugs, antimicrobial activity, and toxicity, Antibiotics. 2(2018)46.

DOI: 10.3390/antibiotics7020046

Google Scholar

[65] B. Das, M.I. Khan, R. Jayabalan, S.K. Behera, S.I. Yun, S.K. Tripathy , Understanding the antifungal mechanism of Ag@ ZnO core-shell nanocomposites against Candida krusei, Sci.Rep. 6(2016)36403.

DOI: 10.1038/srep36403

Google Scholar

[66] R.C. Popescu, E. Andronescu, B.S. Vasile, Recent advances in magnetite nanoparticle functionalization for nanomedicine, Nanomaterials. 12(2019)1791.

DOI: 10.3390/nano9121791

Google Scholar

[67] J.C. Beltran-Huarac, S.P. Singh, M.S. Tomar, S. Peña, L. Rivera, O.J. Perales-Perez , Synthesis of Fe3O4/ZnO core-shell nanoparticles for photodynamic therapy applications, MRS Online Proc Libr Arch. 1257(2010)6-4.

DOI: 10.1557/proc-1257-o06-04

Google Scholar

[68] C. Zheng, Y. Wang, S.Z.F. Phua, W.Q. Lim, Y. Zhao Y, ZnO–DOX@ ZIF-8 core–shell nanoparticles for pH-responsive drug delivery, ACS Biomater. Sci.Eng. 10(2017) 2223-9.

DOI: 10.1021/acsbiomaterials.7b00435

Google Scholar

[69] A. Luchini, G. Vitiello, Understanding the nano-bio interfaces: Lipid-coatings for inorganic nanoparticles as promising strategy for biomedical applications, Front. Chem.7( 2019)343.

DOI: 10.3389/fchem.2019.00343

Google Scholar

[70] R.J. Mudakavi, A.M. Raichur, D. Chakravortty, Lipid coated mesoporous silica nanoparticles as an oral delivery system for targeting and treatment of intravacuolar Salmonella infections, RSC Adv. 105(2014)61160-6.

DOI: 10.1039/c4ra12973c

Google Scholar

[71] S.C. Moorcroft, D.G. Jayne, S.D. Evans, Z.Y. Ong, Stimuli‐Responsive Release of Antimicrobials Using Hybrid Inorganic Nanoparticle‐Associated Drug‐Delivery Systems. Macromol. Biosci. 12(2018)1800207.

DOI: 10.1002/mabi.201800207

Google Scholar

[72] A.R.O. Rodrigues J.O. Matos, A.M. Nova Dias, B.G. Almeida, A. Pires, A.M. Pereira, Development of multifunctional liposomes containing magnetic/plasmonic MnFe2O4/Au core/shell nanoparticles. Pharmaceutics. 2019;11(1):10.

DOI: 10.3390/pharmaceutics11010010

Google Scholar

[73] S.J. Mattingly, M.G. O'Toole, K.T. James , G.J. Clark , M.H. Nantz, Magnetic nanoparticle-supported lipid bilayers for drug delivery, Langmuir.11( 2015)3326-32.

DOI: 10.1021/la504830z

Google Scholar

[74] Y. Patil-Sen, E. Torino, F. De Sarno, A.M. Ponsiglione, V.N. Chhabria, W.Ahmed, Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent, Nanotechnology. (2020).

DOI: 10.1088/1361-6528/ab91f6

Google Scholar

[75] D.Cao, X. Shu, D. Zhu, S. Liang, M. Hasan, S. Gong, Lipid-coated ZnO nanoparticles synthesis, characterization and cytotoxicity studies in cancer cell. Nano Converg. 7(2020)1-18.

DOI: 10.1186/s40580-020-00224-9

Google Scholar