Comparative Study of Optical and Chemical Properties of ZnO-Ag Composites Synthesized from Mimosa Pudica and Andrographis Paniculata Extracts

Article Preview

Abstract:

In this research, a comparison was made between the optical and chemical properties of ZnO-Ag composites with different ZnO and Ag ratios synthesized using extracts obtained from mimosa and Andrographis paniculata plants. The optical properties of the synthesized ZnO-Ag composites were analyzed, focusing on parameters such as absorption and bandgap energy. Moreover, the bandgap, which indicates the energy difference between the valence and conduction bands, was calculated to assess the compounds' electronic behavior. Furthermore, the chemical properties of the ZnO-Ag composites were investigated. This involved analyzing the chemical bond, crystal structure, and crystalline size using X-ray diffraction (XRD) and Fourier Transform Infrared Spectrometer (FT-IR). The experimental findings demonstrated that the crystal sizes of ZnO and Ag in ZnO-Ag composites synthesized using Mimosa pudica extract were considerably smaller compared to those synthesized using Andrographis paniculata extract. Consequently, the energy gap of the ZnO-Ag compounds synthesized with mimosa extract was higher in comparison to those synthesized with Andrographis paniculata extract. By comparing the optical and chemical properties of the ZnO-Ag composites synthesized from mimosa and Andrographis paniculata extracts, valuable insights can be gained regarding the influence of these plant extracts on the resulting composites.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1102)

Pages:

79-87

Citation:

Online since:

October 2023

Export:

Price:

* - Corresponding Author

[1] S. Sangjan, R. Saetan, A. Aoboun, Effect of Ga and Gd as Catalyst in ZnO/Reduced Graphene Oxide Composites upon Photodegradation Process, Solid State Phenom. 287 (2019) 59-63.

DOI: 10.4028/www.scientific.net/ssp.287.59

Google Scholar

[2] S. Sangjan, W. Thongsamer, Application of photocatalytic and adsorption process for residue organic degradation using doped ZnO composites hydrogel beads, Key Eng. Mater. 858 (2020) 109-115.

DOI: 10.4028/www.scientific.net/kem.858.109

Google Scholar

[3] M. Jiménez-Rosado, A. Gomez-Zavaglia, A. Guerrero, A. Romero, Green synthesis of ZnO nanoparticles using polyphenol extracts from pepper waste (Capsicum annuum), J. Clean. Prod. 350 (2022) 131541.

DOI: 10.1016/j.jclepro.2022.131541

Google Scholar

[4] Y.C. Liu, J.F. Li, J.C. Ahn, J.Y. Pu, E. J. Rupa, Y. Huo, D.C. Yang, Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst, Optik. 218 (2020) 165245.

DOI: 10.1016/j.ijleo.2020.165245

Google Scholar

[5] L. Kaliraj, J. C. Ahn, E. J. Rupa, S. Abid, J. Lu, D.C. Yang, Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination, J. Photochem. Photobiol. B, Biol.199 (2019) 111588.

DOI: 10.1016/j.jphotobiol.2019.111588

Google Scholar

[6] I. Fatimah, R.Y. Pradita, A. Nurfalinda, Plant Extract Mediated of ZnO Nanoparticles by Using Ethanol Extract of Mimosa Pudica Leaves and Coffee Powder, Procedia Eng. 148 (2016) 43-48.

DOI: 10.1016/j.proeng.2016.06.483

Google Scholar

[7] W. Ahmad, D. Kalra, Green synthesis, characterization and antimicrobial activities of ZnO nanoparticles using Euphorbia hirta leaf extract, J. King Saud Univ. Sci. 32(4) (2020) 2358-2364.

DOI: 10.1016/j.jksus.2020.03.014

Google Scholar

[8] E.L. Anderson, S.O. Stephen, O.A. Udi, E.A. Oladunni, I.P. Sunday, Investigating the effect of Mimosa Pudica on dichlorvos induced hippocampal neurodegeneration in mice, Phytomedicine Plus. 3(1) (2023) 100393.

DOI: 10.1016/j.phyplu.2022.100393

Google Scholar

[9] O.E. Adurosakin, E.J. Iweala, J.O. Otike, E.D. Dike, M.E. Uche, J.I. Owanta, O.C. Ugbogu, S. N. Chinedu, E.A. Ugbogu, Ethnomedicinal uses, phytochemistry, pharmacological activities and toxicological effects of Mimosa pudica- A review, Pharmacological Research - Modern Chinese Medicine. 7 (2023) 100241.

DOI: 10.1016/j.prmcm.2023.100241

Google Scholar

[10] M. R. Dsouza, S. Athoibi, S. Prabha, Pharmacognostical Investigation of Andrographis paniculata(Green Chiretta) and Crystallization of the Bioactivecomponent Andrographolide, Int. J. Pharmtech Res. 13(2) (2020) 40-50.

DOI: 10.20902/ijptr.2019.130207

Google Scholar

[11] E. Mussard, A. Cesaro, E. Lespessailles, B. Legrain, S. Berteina-Raboin and H. Toumi, Andrographolide, a Natural Antioxidant: An Update, Antioxidants (Basel). 8(12) (2019) 571.

DOI: 10.3390/antiox8120571

Google Scholar

[12] K. Natania and K. Haniel, Bitterness reduction of Green Chiretta (Andrographis paniculata) leaves and its functionality, IOP Conf. Ser.: Mater. Sci. Eng. 1011 (2021) 012036.

DOI: 10.1088/1757-899x/1011/1/012036

Google Scholar

[13] E. J. Jahja, R. Yuliana, W. T. Simanjuntak, N. Fitriya, A. Rahmawati, E. Yulinah, Potency of Origanum vulgare and Andrographis paniculata extracts on growth performance in poultry, Vet. Anim. Sci. 19 (2023) 100274.

DOI: 10.1016/j.vas.2022.100274

Google Scholar

[14] S. Shivashankar, A. Murali, M.K. Sangeetha, Molecular interaction of phytochemicals with snake venom: Phytochemicals of Andrographis paniculata inhibits phospholipase A2 of Russell's viper (Daboia russelli), Biocatalysis and Agricultural Biotechnology.18 (2019) 101058.

DOI: 10.1016/j.bcab.2019.101058

Google Scholar

[15] A. Bragaru, M. Kusko, E. Vasile, Analytical characterization of engineered ZnO nanoparticles relevant for hazard assessment, J Nanopart Res. 15 (2013) 1352.

DOI: 10.1007/s11051-012-1352-0

Google Scholar

[16] Y. Meng, Sustainable Approach to Fabricating Ag Nanoparticles/PVA Hybrid Nanofiber and Its Catalytic Activity, Nanomaterials (Basel). 5(2) (2015) 1124.

DOI: 10.3390/nano5021124

Google Scholar

[17] B.S. Naveen, Tvn. Padmesh, K.S. Uma Suganya, K. Govindaraju, G. Kumar, K. Anand, Structural and optical properties of watersoluble iron nanoparticles using mimosa pudica leaf extract via green route, Sci. Bull. B Chem. Mater. Sci. UPB. 78(2) (2016) 177–184.

Google Scholar

[18] P. Jakinala, H. Naik Lavudi, N. Angali, S. Ganderla, K. K. Inampudi, S. B. Andugulapati, M. Srinivas and M. R. Katika, Green synthesis of ZnO-Ag nanocomposite using Stenotaphrum secundatum grass extract: Antibacterial activity and anticancer effect in oral squamous cell carcinoma CAL 27 cells, Inorg. Chem. Commun. 152 (2023) 110735.

DOI: 10.1016/j.inoche.2023.110735

Google Scholar

[19] M. MuthuKathija, M. Sheik Muhideen Badhusha, V. Rama, Green synthesis of zinc oxide nanoparticles using Pisonia Alba leaf extract and its antibacterial activity, Applied Surface Science Advances. 15 (2023) 100400

DOI: 10.1016/j.apsadv.2023.100400

Google Scholar

[20] J. Maity, D. Roy and T. Bala, Template-free synthesis of hexagonal ZnO disk and ZnO–Ag composite as potential photocatalyst, Hybrid Advances. 3 (2023) 100055.

DOI: 10.1016/j.hybadv.2023.100055

Google Scholar

[21] T.S. Roy, S. Akter, M.R. Fahim, Md. Abdul Gafur, T. Ferdous, Incorporation of Ag-doped ZnO nanorod through Graphite hybridization: Effective approach for degradation of Ciprofloxacin, Heliyon 9(2) (2023) 13130.

DOI: 10.1016/j.heliyon.2023.e13130

Google Scholar

[22] A. A. Shaikh, M. R. Patil, B. S. Jagdale, V. A. Adole, Synthesis and characterization of Ag doped ZnO nanomaterial as an effective photocatalyst for photocatalytic degradation of Eriochrome Black T dye and antimicrobial agent, Inorganic Chemistry Communications 151 (2023) 110570.

DOI: 10.1016/j.inoche.2023.110570

Google Scholar