Hierarchical CoP@NiMn-P Nanocomposites Grown on Carbon Cloth for High-Performance Supercapacitor Electrodes

Article Preview

Abstract:

Transition metal phosphides (TMPs) are potential candidates for supercapacitors. To improve their performance by adjusting their morphology and composition, hierarchical CoP@NiMn-P nanocomposites were successfully prepared by the hydrothermal method, electrodeposition, and low-temperature phosphorization. NiMn-P nanosheets were coated on CoP nanowires to form a hierarchical structure. Electrochemical analysis results indicated that the specific capacitance reached 2162.2 F g-1 at 1 A g-1 with a high capacitance retention ratio of 83.3% after 5000 cycles at a current density of 10 A g-1. This excellent electrochemical performance was attributed to the large specific surface area and enhanced conductivity. Furthermore, an asymmetric supercapacitor, CoP@NiMn-P//AC, was prepared using CoP@NiMn-P as the positive electrode and AC as the negative electrode. A large voltage window of 1.6 V and high energy density of 21.1 Wh kg-1 at 804.3 W kg-1 with a good capacity retention rate were achieved. The results confirm that CoP@NiMn-P has good potential for application in high-performance energy storage devices and provide a reference for the design of phosphide with morphology/composition optimization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-64

Citation:

Online since:

December 2023

Export:

Price:

* - Corresponding Author

[1] S. Yesmin, M. Devi, R. Dasgupta, and S.S. Dhar, CoFe2O4 nanocubes over Cu/graphitic carbon nitride as electrode materials for solid-state asymmetric supercapacitors, Chem. Eng. J. 446 (2022), 136540.

DOI: 10.1016/j.cej.2022.136540

Google Scholar

[2] M. Akhtar, S. Rafiq, M.F. Warsi, S.M. El-Bahy, M.M. Hessien, G.A.M. Mersal, M.M. Ibrahim, and M. Shahid, Hierarchically porous NiO microspheres and their nanocomposites with exfoliated carbon as electrode materials for supercapacitor applications, J. Taibah Univ Sci. 16 (2022), 575-584.

DOI: 10.1080/16583655.2022.2083361

Google Scholar

[3] S. Harish, and P.U. Sathyakam, A review of tin selenide-based electrodes for rechargeable batteries and supercapacitors, J. Energy. Storage. 52 (2022), 104966.

DOI: 10.1016/j.est.2022.104966

Google Scholar

[4] M.J. Zeng, X.F. Li, W. Li, T.Y. Zhao, J. Wu, S.M. Hao, and Z.Z. Yu, Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors, Appl. Surf. Sci. 598 (2022), 153765.

DOI: 10.1016/j.apsusc.2022.153765

Google Scholar

[5] H.F. Zhang, J. Wang, H.Y. Duan, J. Ren, H.M. Zhao, C.G. Zhou, and J.C. Qi, Mn3+ partially substituting the Ni3+ of NiCo2O4 enhance the charge transfer kinetics and reaction activity for hybrid supercapacitor, Appl. Surf. Sci. 597 (2022), 153617.

DOI: 10.1016/j.apsusc.2022.153617

Google Scholar

[6] J. Wang, F. Zheng, M.J. Li, J. Wang, D.H. Jia, X.D. Mao, P.F. Hu, Q. Zhen, and Y. Yu, V2O5@RuO2 core-shell heterojunction nano-arrays as electrode material for supercapacitors, Chem. Eng. J. 446 (2022), 136922.

DOI: 10.1016/j.cej.2022.136922

Google Scholar

[7] S. Sharma and P. Chand, Supercapacitor and electrochemical techniques: A brief review, Results in Chemistry 5 (2023), 100885.

DOI: 10.1016/j.rechem.2023.100885

Google Scholar

[8] J.H. Fan, K.F. Wu, A.Y. Chen, M.T. Wang, X.F. Xie, and J.T. Fan, Fingerprint-like NiCoP electrode material with rapid charging/discharging performance under large current density, J. Alloy. Compd. 902 (2022), 163866.

DOI: 10.1016/j.jallcom.2022.163866

Google Scholar

[9] J.S. Chen, P. Bandyopadhyay, E.M. Jin, and S.M. Jeong, Rationally designed hierarchical tree-like Fe-Co-P@Ni(OH)(2) hybrid nanoarrays for high energy density asymmetric supercapacitors, Appl. Surf. Sci. 588 (2022), 152857.

DOI: 10.1016/j.apsusc.2022.152857

Google Scholar

[10] J.X. Li, J.W. Zhao, L.R. Qin, Q.T. Zhang, X.L. Tang, and Y.Y. Xu, Hierarchical Co(OH)2@NiMoS4 nanocomposite on carbon cloth as electrode for high-performance asymmetric supercapacitors, RSC Adv. 10 (2020), 22606.

DOI: 10.1039/d0ra03253k

Google Scholar

[11] R. Sharma, H. Kumar, G. Kumar, S. Sharma, R. Aneja, A. K. Sharma, R. Kumar, P. Kumar, Progress and challenges in electrochemical energy storage devices: Fabrication, electrode material, and economic aspects, Chem. Eng. J. 468 (2023), 143706.

DOI: 10.1016/j.cej.2023.143706

Google Scholar

[12] Z.F. Tian, H.Y. Zeng, S.B. Lv, Y.W. Long, S. Xu, H.B. Li, and K.M. Zou, Construction of NiCoZnS materials with controllable morphology for high-performance supercapacitors, Nanotechnology 33 (2022), 245703.

DOI: 10.1088/1361-6528/ac4210

Google Scholar

[13] H. Fu, A. Zhang, H. Guo, H. Zong, F. Jin, K. Zhao, J. Liu, Rose-like ZnNiCo layered double hydroxide grown on Co3O4 nanowire arrays for high energy density flexible supercapacitors, J. Energy Storage 56 (2022), 106056.

DOI: 10.1016/j.est.2022.106056

Google Scholar

[14] W.F. Liu, H.X. Gao, Z. Zhang, Y.F. Zheng, Y.H. Wu, X.T. Fu, J. Su, and Y.H. Gao, CoP/Cu3P heterostructured nanoplates for high-rate supercapacitor electrodes, Chem. Eng. J. 437 (2022), 135352.

DOI: 10.1016/j.cej.2022.135352

Google Scholar

[15] F.F. Xiang, Y.X. Dong, X.Q. Yue, Q.J. Zheng, D.M. Lin, High-capacity CoP-Mn3P nanoclusters heterostructures derived by Co2MnO4 as advanced electrodes for supercapacitors, J Colloid Interf Sci, 611 (2022) 654-661.

DOI: 10.1016/j.jcis.2021.12.118

Google Scholar

[16] S. Liu, Y. Yin, D.X. Ni, K.S. Hui, K.N. Hui, S. Lee, C.Y. Ouyang, S.C. Jun, Phosphorous-containing oxygen-deficient cobalt molybdate as an advanced electrode material for supercapacitors, Energy Storage Mater. 19 (2019) 186-196.

DOI: 10.1016/j.ensm.2018.10.022

Google Scholar

[17] X.D. Hong, C.Y. Deng, G.J. Wang, X. Wang, W. Dong, Composition and morphology transition of NF/MnP/NiCoP composite electrode induced by charge/discharge activation, Chem. Eng. J. 451 (2023) 139036.

DOI: 10.1016/j.cej.2022.139036

Google Scholar

[18] Q.S. Liu, R. Hu, J.Q. Qi, Y.W. Sui, Y.Z. He, Q.K. Meng, F.X. Wei, and Y.J. Ren, Facile synthesis of NiCoP nanosheets on carbon cloth and their application as positive electrode material in asymmetric supercapacitor, Ionics. 26 (2020), 355-366.

DOI: 10.1007/s11581-019-03174-3

Google Scholar

[19] B.K. Satpathy, S. Patnaik, and D. Pradhan, Room-Temperature Growth of Co(OH)2 Nanosheets on Nanobelt-like Cu(OH)2 Arrays for a Binder-Free High-Performance All-Solid-State Supercapacitor, Acs Appl. Energ. Mater. 5 (2022), 77-87.

DOI: 10.1021/acsaem.1c02398

Google Scholar

[20] H. Wu, P. Shi, Y. Gan, C. Wang, H. Li, Z.H. Zheng, J. Wan, J.Y. Li, L. Lv, L. Tao, G.K. Ma, H.B. Wang, J. Zhang, H.Z. Wan, and H. Wang, Mn-dopant induced Octahedral Configuration Strongly Stabilizes Ni12P5 Nanowires for Battery-Supercapacitor Hybrid Devices, J. Alloy. Compd. 903 (2022), 163897.

DOI: 10.1016/j.jallcom.2022.163897

Google Scholar

[21] Z.Y. Ji, K. Liu, L.Z. Chen, Y.J. Nie, D. Pasang, Q. Yu, X.P. Shen, K.Q. and Xu, S. Premlatha, Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors, J. Colloid Interf. Sci., 609 (2022), 503-512.

DOI: 10.1016/j.jcis.2021.11.055

Google Scholar

[22] Y.R. Hao, H. Guo, F. Yang, J.Y. Zhang, N. Wu, M.Y. Wang, C.L. Li, and W. Yang, Hydrothermal synthesis of MWCNT/Ni-Mn-S composite derived from bimetallic MOF for high-performance electrochemical energy storage, J. Alloy. Compd. 911 (2022), 164726.

DOI: 10.1016/j.jallcom.2022.164726

Google Scholar

[23] S.W. Su, L. Sun, J.L. Qian, X.C. Shi, and Y.H. Zhang, Hollow Bimetallic Phosphosulfide NiCo-P/S Nanoparticles in a CNT/rGO Framework with Interface Charge Redistribution for Battery-Type Supercapacitors, Acs Appl. Energ Mater. 5 (2022), 685-696.

DOI: 10.1021/acsaem.1c03179

Google Scholar

[24] Z.Y. Hu, Y.D. Miao, X.L. Xue, B. Xiao, J.Q. Qi, F.X. Wei, Q.K. Meng, Y.W. Sui, Z. Sun, and J.L. Liu, CuO@NiCoFe-S core-shell nanorod arrays based on Cu foam for high performance energy storage, J. Colloid Interf. Sci. 599 (2021), 34-45.

DOI: 10.1016/j.jcis.2021.04.085

Google Scholar

[25] X.Y. Lei, S.C. Ge, T.Y. Yang, Y.L. Lu, Y.L. Chueh, and B. Xiang, Ni-Mo-S@Ni-P composite materials as binder-free electrodes for aqueous asymmetric supercapacitors with enhanced performance, J. Power Sources, 477 (2020), 229022.

DOI: 10.1016/j.jpowsour.2020.229022

Google Scholar

[26] C.L. Liu, G. Zhang, L. Yu, J.H. Qu, and H.J. Liu, Oxygen Doping to Optimize Atomic Hydrogen Binding Energy on NiCoP for Highly Efficient Hydrogen Evolution, Small 14 (2018), 1800421.

DOI: 10.1002/smll.201800421

Google Scholar

[27] Y. Lu, H.J. Yu, C. Chen, R.L. Fan, and M.R. Shen, Sulfide@hydroxide core-shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation, J. Energy. Chem. 58 (2021), 431-440.

DOI: 10.1016/j.jechem.2020.10.001

Google Scholar

[28] P. Yang, X.F. Sun, S.H. Wang, and H.L. Xing, Hierarchically hexagon-like NiCoP/Co(PO3)(2) composites supported on Ni foam as multifunction electrodes for supercapacitors and overall water splitting, J. Phys. Chem. Solids 162 (2022), 110511.

DOI: 10.1016/j.jpcs.2021.110511

Google Scholar

[29] J. Choi, J. Lee, J. Lim, S. Park, and Y. Piao, PEDOT/Cobalt hexacyanoferrate free-standing films for high-performance quasi-solid-state asymmetric supercapacitor, J. Alloy. Compd. 914 (2022), 165365.

DOI: 10.1016/j.jallcom.2022.165365

Google Scholar

[30] M.L. Yan, Y.D. Yao, J.Q. Wen, L. Long, M.L. Kong, G.G. Zhang, X.M. Liao, G.F. Yin, and Z.B. Huang, Construction of a Hierarchical NiCo2S4@PPy Core Shell Heterostructure Nanotube Array on Ni Foam for a High-Performance Asymmetric Supercapacitor, Acs Appl. Mater. Inter. 8 (2016), 24525-24535.

DOI: 10.1021/acsami.6b05618

Google Scholar

[31] H.S. Nishad, S.P. Gupta, V. Kotha, B.M. Patil, S.D. Chakane, M.G. Bute, S.W. Gosavi, D.J. Late, P.S. Walke, Enhanced van-der Waals separation in hydrated tungsten oxide nanoplates enables superior pseudocapacitive charge storage, J.Alloy.Compd. 914 (2022) 165227.

DOI: 10.1016/j.jallcom.2022.165227

Google Scholar

[32] D. Gogoi, R.S. Karmur, M.R. Das, and N.N. Ghosh, Cu and CoFe2O4 nanoparticles decorated hierarchical porous carbon: An excellent catalyst for reduction of nitroaromatics and microwave-assisted antibiotic degradation, Appl. Catal. B-Environ. 312 (2022), 121407.

DOI: 10.1016/j.apcatb.2022.121407

Google Scholar

[33] E.M. Abebe, and M. Ujihara, Simultaneous Electrodeposition of Ternary Metal Oxide Nanocomposites for High-Efficiency Supercapacitor Applications, Acs Omega 7 (2022), 17161-17174.

DOI: 10.1021/acsomega.2c00826

Google Scholar

[34] J. Acharya, B. Pant, G.P. Ojha, M. Park, Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe2O4@NiMoO4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance, J. Colloid Interf. Sci. 610 (2022) 863-878.

DOI: 10.1016/j.jcis.2021.11.129

Google Scholar

[35] A. Mateen, M.S. Javed, S. Khan, A. Saleem, M.K. Majeed, A.J. Khan, M.F. Tahir, M.A. Ahmad, M.A. Assiri, K.Q. Peng, Metal-organic framework-derived walnut-like hierarchical Co-O-nanosheets as an advanced binder-free electrode material for flexible supercapacitor, J. Energy Storage 49 (2022) 104150.

DOI: 10.1016/j.est.2022.104150

Google Scholar

[36] J. Acharya, B. Pant, G.P. Ojha, and M. Park, Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe2O4@NiMoO4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance, J. Colloid Interf. Sci. 610 (2022), 863-878.

DOI: 10.1016/j.jcis.2021.11.129

Google Scholar

[37] W.W. Song, B. Wang, X.M. Cao, Q. Chen, and Z.B. Han, ZIF-67-derived NiCo2O4@Co2P/Ni2P honeycomb nanosheets on carbon cloth for high-performance asymmetric supercapacitors, Inorg Chem Front. 8 (2021), 5100-5112.

DOI: 10.1039/d1qi00934f

Google Scholar

[38] H. Jia, X.Y. Zhu, T.T. Song, J.P. Pan, F. Peng, L.H. Li, and Y. Liu, Hierarchical nanocomposite of carbon-fiber-supported NiCo-based layered double-hydroxide nanosheets decorated with (NiCo)Se-2 nanoparticles for high performance energy storage, J. Colloid Interf. Sci. 608 (2022), 175-185.

DOI: 10.1016/j.jcis.2021.09.181

Google Scholar

[39] S. Li, S.Y. Wang, and J.S. Wang, Optimal surface/diffusion-controlled kinetics of bimetallic selenide nanotubes for hybrid supercapacitors, J. Colloid Interf. Sci. 617 (2022), 304-314.

DOI: 10.1016/j.jcis.2022.02.125

Google Scholar

[40] S.C. Sekhar, B. Ramulu, M.H. Han, S.J. Arbaz, M. Nagaraju, H.S. Oh, J.S. Yu, Unraveling CoNiP-CoP2 3D-on-1D hybrid nanoarchitecture for long-lasting electrochemical hybrid cells and oxygen evolution reaction, Adv Sci, 9 (2022) 2104877.

DOI: 10.1002/advs.202104877

Google Scholar

[41] M.J. Xie, M. Zhou, Y. Zhang, C. Du, J. Chen, and L. Wan, Freestanding trimetallic Fe-Co-Ni phosphide nanosheet arrays as an advanced electrode for high-performance asymmetric supercapacitors, J.Colloid Interf Sci. 608 (2022), 79-89.

DOI: 10.1016/j.jcis.2021.09.159

Google Scholar

[42] Y.X. Li, H. Wang, T. Shu, J.Z. Yuan, G.G. Lu, B. Lin, Z. Gao, F.X. Wei, C.Y. Ma, J.Q. Qi, and Y.W. Sui, Two-dimensional hierarchical MoS2 lamella inserted in CoS2 flake as an advanced supercapacitor electrode, J.Energy.Storage. 51 (2022), 104299.

DOI: 10.1016/j.est.2022.104299

Google Scholar

[43] A.M. Zardkhoshoui, B. Ameri, and S.S.H. Davarani, Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors, Chem. Eng. J. 435 (2022), 135170.

DOI: 10.1016/j.cej.2022.135170

Google Scholar

[44] L. Wan, T. Jiang, Y. Zhang, J. Chen, M.J. Xie, and C. Du, 1D-on-1D core-shell cobalt iron selenide @ cobalt nickel carbonate hydroxide hybrid nanowire arrays as advanced battery-type supercapacitor electrode, J. Colloid Interf. Sci. 621 (2022), 149-159.

DOI: 10.1016/j.jcis.2022.04.072

Google Scholar

[45] L. Wan, Y.M. Wang, Y. Zhang, C. Du, J. Chen, M.J. Xie, Z.F. Tian, and W.J. Zhang, Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors, J. Power Sources 506 (2021), 230096.

DOI: 10.1016/j.jpowsour.2021.230096

Google Scholar

[46] S.Y. Yu, N.J. Yang, M. Vogel, S. Mandal, O.A. Williams, S.Y. Jiang, H. Schonherr, B. Yang, and X. Jiang, Battery-like Supercapacitors from Vertically Aligned Carbon Nanofiber Coated Diamond: Design and Demonstrator, Adv. Energy Mater. 8 (2018), 1702947.

DOI: 10.1002/aenm.201870054

Google Scholar

[47] Y. Wang, L.J. Chen, S.M. Lin, G. W. Wu, J. Luo, H. Yang, and H. Qin, Bimetallic Ni0.4Mn1.6P derived from nickel functionalized a new Mn metal-organic framework for supercapacitor, Mater. Today Commun. 26 (2021), 102057.

DOI: 10.1016/j.mtcomm.2021.102057

Google Scholar

[48] H.M. El Sharkawy, D.M. Sayed, A. S. Dhmees, R.M. Aboushahba, and N.K. Allam, Facile synthesis of nanostructured binary Ni-Cu phosphides as advanced battery materials for asymmetric electrochemical supercapacitors, ACS Appl. Energy Mater. 3 (2020), 9305−9314.

DOI: 10.1021/acsaem.0c01630

Google Scholar

[49] P. Sivakumar, M.G. Jung, C. Justin Raj, H.H. Rana, and H.S. Park, 1D interconnected porous binary transition metal phosphide nanowires for high performance hybrid supercapacitors, Int. J. Energy Res. 45 (2021), 17005-17014.

DOI: 10.1002/er.6874

Google Scholar

[50] Y.H. Jia, D.P. Hu, X. Wang, H.J. Zhang, and P.C. Du, Carbon layer coated nickel phosphide nanoparticles embedded in three-dimensional graphene network for high-performance supercapacitor, J. Energy Storage 50 (2022), 104713.

DOI: 10.1016/j.est.2022.104713

Google Scholar

[51] M. Wang, Y.Y. Cai, Y. Yang, D.A. Zhu, N.N. Zhang, M.F. Wang, and X.Z. Li, Synthesis and Characterization of Ni2P@CoP3 Core-Shell Nanospheres for Supercapacitors, Chinese J. Inorg. Chem. 37 (2021), 1633-1641.

Google Scholar

[52] J.L. Gu, L. Sun, Y.X. Zhang, Q.Y. Zhang, X.M. Li, H.C. Si, Y. Shi, C. Sun, Y. Gong, and Y.H. Zhang, MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors, Chem. Eng. J. 385 (2020), 123454.

DOI: 10.1016/j.cej.2019.123454

Google Scholar

[53] W.J. Zhang, Z.T. Chen, X.L. Guo, K. Jin, Y.X. Wang, L. Li, Y. Zhang, Z.M. Wang, L.T. Sun, and T. Zhang, N/S co-doped three-dimensional graphene hydrogel for high performance supercapacitor, Electrochim. Acta 278 (2018), 51-60.

DOI: 10.1016/j.electacta.2018.05.018

Google Scholar

[54] M.P. He, W.L. Xu, Y.C. Wu, Z.Q. Dong, and L. Lv, Co(OH)2/Ag based interdigital micro- supercapacitor fabricated via laser welding and electrodeposition with excellent bendability, Inorg. Chem. Commun. 104 (2019), 150-154.

DOI: 10.1016/j.inoche.2019.04.013

Google Scholar

[55] S. Nagamuthu, S. Vijayakumar, and K.S. Ryu, Cerium oxide mixed LaMnO3 nanoparticles as the negative electrode for aqueous asymmetric supercapacitor devices, Mater. Chem. Phys. 199 (2017), 543-551.

DOI: 10.1016/j.matchemphys.2017.07.050

Google Scholar

[56] F.O. Ochai-Ejeh, M.J. Madito, D.Y. Momodu, A.A. Khaleed, O. Olaniyan, and N. Manyala, High performance hybrid supercapacitor device based on cobalt manganese layered double hydroxide and activated carbon derived from cork (Quercus Suber), Electrochim. Acta 252 (2017), 41-54.

DOI: 10.1016/j.electacta.2017.08.163

Google Scholar