Properties of Multi-Component Fire Extinguishing Systems Based on Light Bulk Materials

Article Preview

Abstract:

To extinguish flammable liquids, it is suggested to use a multi-component fire extinguishing system consisting of two layers. The first layer is designed to ensure the buoyancy of the fire extinguishing system. It is suggested to use crushed foam glass as the material of this layer. As the material of the upper layer, it is suggested to use light dispersed materials with increased thermal insulation properties. As such materials, the use of exfoliated perlite and vermiculite is justified. To increase the insulating and cooling properties of the fire extinguishing system, wetting of the upper layer with water is used. Bulk density, buoyancy in heptane and moisture retention of crushed foam glass, expanded perlite and vermiculite were experimentally determined. The insulating properties of binary layers of foam glass + perlite and foam glass + vermiculite were studied. The heights of the layers of dry and wet bulk materials necessary for extinguishing heptane were determined experimentally. A conclusion was made about the advantages of the proposed fire extinguishing system based on light bulk materials compared to the existing fire extinguishing means.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-184

Citation:

Online since:

August 2023

Export:

Price:

* - Corresponding Author

[1] M.P. Suprovych, O.V. Shutyak, Structural analysis of the number of fires in Ukraine. Podilian Bulletin: Agriculture, Engineering, Economics, 36 (2023) 36–45.

Google Scholar

[2] J.G. Hylton, G.P. Stein, U.S. Fire Department Profile. National Fire Protection Association, (2017).

Google Scholar

[3] H. Zhi, Y. Bao, L. Wang, Y. Mi, Extinguishing performance of alcohol-resistant firefighting foams on polar flammable liquid fires, Journal of Fire Sciences, 38(1) (2019) 53–74.

DOI: 10.1177/0734904119893732

Google Scholar

[4] I.V. Voytkov, M.V. Zabelin, O.V. Vysokomornaya, Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow, EPJ Web of Conferences, 110 (2016) 01083.

DOI: 10.1051/epjconf/201611001083

Google Scholar

[5] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Improving the installation for fire extinguishing with finelydispersed water, Eastern-European Journal of Enterprise Technologies, 2(10 (92)) (2018) 38–43.

DOI: 10.15587/1729-4061.2018.127865

Google Scholar

[6] A. Semko, O. Rusanova, O. Kazak, M. Beskrovnaya, S. Vinogradov, I. Gricina, The use of pulsed high-speed liquid jet for putting out gas blow-out, International Journal of Multiphysics, 9/1 (2015) 9–20.

DOI: 10.1260/1750-9548.9.1.9

Google Scholar

[7] I.F. Dadashov, V.M. Loboichenko, V.M. Strelets, M.А. Gurbanova, F.M. Hajizadeh, A.І. Morozov, About the environmental characteristics of fire extinguishing substances used in extinguishing oil and petroleum products [Article@Neft və neft məhsullarının söndürülməsində tətbiq olunan yanğınsöndürücü vasitələrin ekoloji xüsusiyyətlərinin təhlili] SOCAR Proceedings, 5 (2020) 79–84.

DOI: 10.5510/ogp20200100426

Google Scholar

[8] O. Rybalova, S. Artemiev, M. Sarapina, B. Tsymbal, A. Bakhareva, O. Shestopalov, O. Filenko, Development of methods for estimating the environmental risk of degradation of the surface water state, Eastern-European Journal of Enterprise Technologies, 2 10–92 (2018)4-17.

DOI: 10.15587/1729-4061.2018.127829

Google Scholar

[9] B. Pospelov, E. Rybka, V. Togobytska, R. Meleshchenko, Yu. Danchenko, Construction of the method for semi-adaptive threshold scaling transformation when computing recurrent plots, Eastern-European Journal of Enterprise Technologies, 4/10 (100) (2019) 22–29.

DOI: 10.15587/1729-4061.2019.176579

Google Scholar

[10] A.N. Semko, M.V. Beskrovnaya, S.A. Vinogradov, I.N. Hritsina, N.I. Yagudina, The usage of high speed impulse liquid jets for putting out gas blowouts, Journal of theoretical and applied mechanics, 3(52) (2014) 655–664.

Google Scholar

[11] D. Dubinin, K. Korytchenko, A. Lisnyak, I. Hrytsyna, V. Trigub, Numerical simulation of the creation of a fire fighting barrier using an explosion of a combustible charge, Eastern-European Journal of Enterprise Technologies, 6(10 (90)) (2017) 11–16.

DOI: 10.15587/1729-4061.2017.114504

Google Scholar

[12] M. Kustov, V. Kalugin, V. Tutunik, O. Tarakhno, Physicochemical principles of the technology of modified pyrotechnic compositions to reduce the chemical pollution of the atmosphere, Voprosy Khimii i Khimicheskoi Tekhnologii, (1) (2019) 92–99.

DOI: 10.32434/0321-4095-2019-122-1-92-99

Google Scholar

[13] H. Zhi, Y. Bao, L. Wang, Y. Mi, Extinguishing performance of alcohol-resistant firefighting foams on polar flammable liquid fires, Journal of Fire Sciences, 38(1) (2019) 53–74.

DOI: 10.1177/0734904119893732

Google Scholar

[14] Y. Abramov, O. Basmanov, J. Salamov, A. Mikhayluk, O. Yashchenko, Developing a model of tank cooling by water jets from hydraulic monitors under conditions of fire, Eastern-European Journal of Enterprise Technologies, 1 10–97 (2019) 14–20.

DOI: 10.15587/1729-4061.2019.154669

Google Scholar

[15] I. Dadashov, V. Loboichenko, A. Kireev, Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products, Pollution Research, 1(37) (2018) 63–77.

Google Scholar

[16] I. Dadashov, A. Kireev, D. Tregubov, О. Tarakhno, Hasinnya horyuchykh ridyn tverdymy porystymy materialamy ta heleutvoryuyuchymy systemamy, National University of Civil Defence of Ukraine and University, (2021).

Google Scholar

[17] A. Chernukha, A. Teslenko, P. Kovalov, O. Bezuglov, Mathematical Modeling of Fire-Proof Efficiency of Coatings Based on Silicate Composition, Materials Science Forum, 1006 (2020) 70–75.

DOI: 10.4028/www.scientific.net/msf.1006.70

Google Scholar

[18] A. Vasilchenko, Y. Otrosh, N. Adamenko, E. Doronin, A. Kovalov, Feature of fire resistance calculation of steel structures with intumescent coating, MATEC Web of Conferences, 230 (2018) 02036.

DOI: 10.1051/matecconf/201823002036

Google Scholar

[19] V.S. Makarenko, O.O. Kireev, M.A. Chyrkina, I.F. Dadashov, Doslidzhennya izolyuyuchykh vlastyvostey shariv lehkykh porystykh materialiv, Problemy pozharnoy bezopasnosti, (48) (2020) 112–118.

Google Scholar

[20] I.F. Dadashov, Simulation of the insulating properties of two-layer material, Functional materials, 25(4) (2018) 774–779.

DOI: 10.15407/fm25.04.774

Google Scholar

[21] S. Vambol, I. Bogdanov, V. Vambol, Y. Suchikova, O. Kondratenko, O. Hurenko, S. Onishchenko, Research into regularities of pore formation on the surface of semiconductors, Eastern-European Journal of Enterprise Technologies, 3(5(87)) (2017) 37–44.

DOI: 10.15587/1729-4061.2017.104039

Google Scholar

[22] V.S. Makarenko, O.O. Kireev, D.G. Tregubov, M.A. Chyrkina, Doslidzhennya vohnehasnykh vlastyvostey binarnykh shariv lehkykh porystykh materialiv, Problemy nadzvychaynykh sytuatsiy, 1(33) (2021) 235–245.

Google Scholar