Synthesis and Characterization of Enhanced Proton-Conducting Nafion® 117- Silica Composite Membranes for Fuel Cell Applications

Article Preview

Abstract:

Nafion®/silica nanocomposite membranes were prepared by impregnation method from Nafion® 117 and sol-gel pre-synthesized n-octadecyl-trimethoxy silane (C18TMS) coated silica nanoparticles. The scanning electron microscope (SEM) of pristine silica particles displayed monodispersed nanospheres with diameters ranging from 150-350 nm; while Brunauer-Emmett-Teller (BET) analysis presented 760 m2/g BET surface area, a micropore-mesopore bimodal distribution of micropore systems with respective pore volume at 14.6 Å and 17.0 Å (2.01 x 10-3 cm3/g.Å), as well as the prolific mesopores centered at 29.5 Å (5.64 x 10-2 cm3/g.Å). Characterization of Nafion® 117 based membranes on SEM, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and x-ray diffraction (XRD), and tensile stress exhibited varying surface morphology with silica loadings, structural interaction between membrane support and the ion exchanger, thermal stabilities (up to 330 °C), crystalline nature, and reasonable mechanical stability of nanocomposite membranes. The maximum water uptake (44.8 %) and proton conductivity of (1.14 x10-2 S/cm) were obtained on low Nafion®/SiO2 (5%) loaded membrane. While both composite membranes displayed the improved reduction in methanol permeability, 2.43x10-07 cm2/s at 80 °C was obtained with high Nafion®/SiO2 (10%) loading. Improved water uptake and proton conductivity substantiate the high ion exchange capacity (IEC) of 1.81 meq.g-1 when compared to IEC of 0.93 meq.g-1 [pristine Nafion®] and 1.46 meq.g-1 [Nafion®/SiO2 (10%)]. The increase in IEC value may be due to the high acid functionalization of additional sulfonic acid groups surrounded by hydrophilic segments of nanosilica, which improves the properties of the membrane. The high proton conductivity coupled with great water retention capabilities indicated that the Nafion®/SiO2 nanocomposite membranes could be utilized as proton exchange membranes for medium temperature methanol fuel cells. Keywords: Fuel cells; nanocomposite membrane; SiO2 nanofillers; methanol permeability; ion exchange capacity

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-116

Citation:

Online since:

April 2024

Export:

Price:

* - Corresponding Author

[1] P. Singh, S. Singh, G. Kumar, and P. Baweja, Energy: crises, challenges and solutions. 2021: John Wiley & Sons.

Google Scholar

[2] Y. Luo, Y. Wu, B. Li, T. Mo, Y. Li, S.-P. Feng, J. Qu, and P.K. Chu, Development and application of fuel cells in the automobile industry. Journal of Energy Storage, 2021. 42: p.103124.

DOI: 10.1016/j.est.2021.103124

Google Scholar

[3] M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 2021. 146: p.111180.

DOI: 10.1016/j.rser.2021.111180

Google Scholar

[4] H. Burhan, K. Cellat, G. Yılmaz, and F. Şen, Direct methanol fuel cells (DMFCs), in Direct Liquid Fuel Cells. 2021, Elsevier. pp.71-94.

DOI: 10.1016/b978-0-12-818624-4.00003-0

Google Scholar

[5] V. Raj, Direct methanol fuel cells in portable applications: materials, designs, operating parameters, and practical steps toward commercialization, in Direct Methanol Fuel Cell Technology. 2020, Elsevier. pp.495-525.

DOI: 10.1016/b978-0-12-819158-3.00016-1

Google Scholar

[6] J. Zheng, H. Zhou, C.-G. Wang, E. Ye, J.W. Xu, X.J. Loh, and Z. Li, Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Materials, 2021. 35: pp.695-722.

DOI: 10.1016/j.ensm.2020.12.007

Google Scholar

[7] M.R. Mansor and M.Z. Akop, Polymer nanocomposites smart materials for energy applications, in Polymer nanocomposite-Based smart materials. 2020, Elsevier. pp.157-176.

DOI: 10.1016/b978-0-08-103013-4.00009-1

Google Scholar

[8] G. Amba Prasad Rao, K.J. Reddy, R.M. Reddy, K. Madhu Murthy, and G. Naga Srinivasulu, Direct methanol fuel cells for automotive applications: a review. International Journal of Ambient Energy, 2022. 43(1): pp.7349-7370.

DOI: 10.1080/01430750.2022.2063380

Google Scholar

[9] M. Brodt, K. Müller, J. Kerres, I. Katsounaros, K. Mayrhofer, P. Preuster, P. Wasserscheid, and S. Thiele, The 2‐Propanol Fuel Cell: A Review from the Perspective of a Hydrogen Energy Economy. Energy Technology, 2021. 9(9): p.2100164.

DOI: 10.1002/ente.202100164

Google Scholar

[10] A. Jayakumar, D.K. Madheswaran, and N.M. Kumar, A critical assessment on functional attributes and degradation mechanism of membrane electrode assembly components in direct methanol fuel cells. Sustainability, 2021. 13(24): p.13938.

DOI: 10.3390/su132413938

Google Scholar

[11] M. Vinothkannan, A.R. Kim, S. Ramakrishnan, Y.-T. Yu, and D.J. Yoo, Advanced Nafion nanocomposite membrane embedded with unzipped and functionalized graphite nanofibers for high-temperature hydrogen-air fuel cell system: The impact of filler on power density, chemical durability and hydrogen permeability of membrane. Composites Part B: Engineering, 2021. 215: p.108828.

DOI: 10.1016/j.compositesb.2021.108828

Google Scholar

[12] S. Awad, E.E. Abdel‐Hady, H.F. Mohamed, Y.S. Elsharkawy, and M.M. Gomaa, Evaluation of transport mechanism and nanostructure of nonperfluorinated PVA/sPTA proton exchange membrane for fuel cell application. Polymers for Advanced Technologies, 2022. 33(10): pp.3339-3349.

DOI: 10.1002/pat.5784

Google Scholar

[13] Y. Fan, B. Yang, and C. Rong, Functionalized carbon nanomaterials for advanced anode catalysts of fuel cells, in Advanced Nanomaterials for Electrochemical-Based Energy Conversion and Storage. 2020, Elsevier. pp.223-263.

DOI: 10.1016/b978-0-12-814558-6.00007-1

Google Scholar

[14] V. Maestre, A. Ortiz, and I. Ortiz, Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renewable and Sustainable Energy Reviews, 2021. 152: p.111628.

DOI: 10.1016/j.rser.2021.111628

Google Scholar

[15] E. Amores, M. SANCHE, and N. Rojas, Sustainable fuel technologies handbook. 2021, New York: Academic Press.

Google Scholar

[16] S.P.F. Bordín, H.E. Andrada, A.C. Carreras, G. Castellano, R. Schweins, G.J. Cuello, C. Mondelli, and V.M.G. Josa, Water channel structure of alternative perfluorosulfonic acid membranes for fuel cells. Journal of Membrane Science, 2021. 636: p.119559.

DOI: 10.1016/j.memsci.2021.119559

Google Scholar

[17] S.H. Woo, A. Taguet, B. Otazaghine, A. Mosdale, A. Rigacci, and C. Beauger, Physicochemical properties of Aquivion/fluorine grafted sepiolite electrolyte membranes for use in PEMFC. Electrochimica Acta, 2019. 319: pp.933-946.

DOI: 10.1016/j.electacta.2019.06.118

Google Scholar

[18] B. Améduri, Fluoropolymers as Unique and Irreplaceable Materials: Challenges and Future Trends in These Specific Per or Poly-Fluoroalkyl Substances. Molecules, 2023. 28(22): p.7564.

DOI: 10.3390/molecules28227564

Google Scholar

[19] R. Haider, Y. Wen, Z.-F. Ma, D.P. Wilkinson, L. Zhang, X. Yuan, S. Song, and J. Zhang, High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies. Chemical Society Reviews, 2021. 50(2): pp.1138-1187.

DOI: 10.1039/d0cs00296h

Google Scholar

[20] M. Vinothkannan, A.R. Kim, and D.J. Yoo, Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: A concise review. RSC advances, 2021. 11(30): pp.18351-18370.

DOI: 10.1039/d1ra00685a

Google Scholar

[21] K. Li and J.G. Chen, CO2 hydrogenation to methanol over ZrO2-containing catalysts: insights into ZrO2 induced synergy. ACS catalysis, 2019. 9(9): pp.7840-7861.

DOI: 10.1021/acscatal.9b01943

Google Scholar

[22] A. Khaleque, M.M. Alam, M. Hoque, S. Mondal, J.B. Haider, B. Xu, M. Johir, A.K. Karmakar, J. Zhou, and M.B. Ahmed, Zeolite synthesis from low-cost materials and environmental applications: A review. Environmental Advances, 2020. 2: p.100019.

DOI: 10.1016/j.envadv.2020.100019

Google Scholar

[23] T. Rajaraman, S.P. Parikh, and V.G. Gandhi, Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal, 2020. 389: p.123918.

DOI: 10.1016/j.cej.2019.123918

Google Scholar

[24] S.P. Hong, S.N.A. Zakaria, and M.U. Ahmed, Trends in the development of immunoassays for mycotoxins and food allergens using gold and carbon nanostructured material. Food Chemistry Advances, 2022: p.100069.

DOI: 10.1016/j.focha.2022.100069

Google Scholar

[25] L. Jiao, R. Zhang, G. Wan, W. Yang, X. Wan, H. Zhou, J. Shui, S.-H. Yu, and H.-L. Jiang, Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nature Communications, 2020. 11(1): p.2831.

DOI: 10.1038/s41467-020-16715-6

Google Scholar

[26] K.H. Lee, J.Y. Chu, A.R. Kim, and D.J. Yoo, Effect of functionalized SiO2 toward proton conductivity of composite membranes for PEMFC application. International Journal of Energy Research, 2019. 43(10): pp.5333-5345.

DOI: 10.1002/er.4610

Google Scholar

[27] G. Xu, Z. Wu, Z. Wei, W. Zhang, J. Wu, Y. Li, J. Li, K. Qu, and W. Cai, Non-destructive fabrication of Nafion/silica composite membrane via swelling-filling modification strategy for high temperature and low humidity PEM fuel cell. Renewable Energy, 2020. 153: pp.935-939.

DOI: 10.1016/j.renene.2020.02.056

Google Scholar

[28] B. Son, K. Oh, S. Park, T.G. Lee, D.H. Lee, and O. Kwon, Study of morphological characteristics on hydrophilicity‐enhanced SiO2/Nafion composite membranes by using multimode atomic force microscopy. International Journal of Energy Research, 2019. 43(9): pp.4157-4169.

DOI: 10.1002/er.4528

Google Scholar

[29] J. Niu, S. Zhang, Y. Li, X. Li, J. Zhang, S. Lu, and Q. He, Effects of microstructure on the retention of proton conductivity of Nafion/SiO2 composite membranes at elevated temperatures: An in situ SAXS study. Polymer, 2023. 273: p.125869.

DOI: 10.1016/j.polymer.2023.125869

Google Scholar

[30] T. Yan, X. Chen, L. Kumari, J. Lin, M. Li, Q. Fan, H. Chi, T.J. Meyer, S. Zhang, and X. Ma, Multiscale CO2 electrocatalysis to C2+ products: Reaction mechanisms, catalyst design, and device fabrication. Chemical Reviews, 2023. 123(17): pp.10530-10583.

DOI: 10.1021/acs.chemrev.2c00514

Google Scholar

[31] B. Paren, Interconnected Aggregates in Precise Single-Ion Conducting Polymers as Pathways for Ion and Proton Transport. 2021, University of Pennsylvania.

Google Scholar

[32] X. Sun, S.C. Simonsen, T. Norby, and A. Chatzitakis, Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review. Membranes, 2019. 9(7): p.83.

DOI: 10.3390/membranes9070083

Google Scholar

[33] N. Shaari and S.K. Kamarudin, Recent advances in additive‐enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research, 2019. 43(7): pp.2756-2794.

DOI: 10.1002/er.4348

Google Scholar

[34] G. Xu, J. Zou, Z. Guo, J. Li, L. Ma, Y. Li, and W. Cai, Bi-functional composting the sulfonic acid based proton exchange membrane for high temperature fuel cell application. Polymers, 2020. 12(5): p.1000.

DOI: 10.3390/polym12051000

Google Scholar

[35] E. Sgreccia, R. Narducci, P. Knauth, and M.L. Di Vona, Silica containing composite anion exchange membranes by sol–gel synthesis: A short review. Polymers, 2021. 13(11): p.1874.

DOI: 10.3390/polym13111874

Google Scholar

[36] C. Imparato, A. Bifulco, G. Malucelli, and A. Aronne, Solids containing Si-OP bonds: is the hydrolytic sol-gel route a suitable synthesis strategy? Journal of Sol-Gel Science and Technology, 2023: pp.1-26.

DOI: 10.1007/s10971-023-06241-4

Google Scholar

[37] W. Khan, Quaternary Ammonium Functionalized Poly (Arylene Ether Sulfone) Copolymer Ionomers: Synthesis, Processing, and Structure-property Relationships. 2019, The University of Nebraska-Lincoln.

Google Scholar

[38] M. Segale, R. Sigwadi, and T. Mokrani, The Impact of Mesoporous Silica Nanoparticles on Electrochemical Performance. Journal of Nano Research, 2023. 79: pp.49-60.

DOI: 10.4028/p-30r16t

Google Scholar

[39] J.A. Gnoatto, J.V. de Oliveira, E. Arndt, F.F. Busatto, Y.P.M. Ruiz, A.C.B. da Cunha, D.J. Moura, and J.H.Z. dos Santos, Hybrid nanosilicas produced by the Stöber sol-gel process: In vitro evaluation in MRC-5 cells. Journal of Non-Crystalline Solids, 2020. 542: p.120152.

DOI: 10.1016/j.jnoncrysol.2020.120152

Google Scholar

[40] E. Passalacqua, R. Pedicini, A. Carbone, I. Gatto, F. Matera, A. Patti, and A. Saccà, Effects of the Chemical Treatment on the Physical-Chemical and Electrochemical Properties of the Commercial Nafion™ NR212 Membrane. Materials, 2020. 13(22): p.5254.

DOI: 10.3390/ma13225254

Google Scholar

[41] N.O. Laschuk, E.B. Easton, and O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC advances, 2021. 11(45): pp.27925-27936.

DOI: 10.1039/d1ra03785d

Google Scholar

[42] B.H. Lim, E.H. Majlan, A. Tajuddin, T. Husaini, W.R.W. Daud, N.A.M. Radzuan, and M.A. Haque, Comparison of catalyst-coated membranes and catalyst-coated substrate for PEMFC membrane electrode assembly: A review. Chinese Journal of Chemical Engineering, 2021. 33: pp.1-16.

DOI: 10.1016/j.cjche.2020.07.044

Google Scholar

[43] K. Chatterjee, Design and Evaluation of a Thermoelectric Heating/cooling Fabric for On-Body Thermal Comfort. 2021: North Carolina State University.

Google Scholar

[44] B.A. Gaweł, A. Ulvensøen, K. Łukaszuk, B. Arstad, A.M.F. Muggerud, and A. Erbe, Structural evolution of water and hydroxyl groups during thermal, mechanical and chemical treatment of high purity natural quartz. RSC advances, 2020. 10(48): pp.29018-29030.

DOI: 10.1039/d0ra05798c

Google Scholar

[45] V.M. Gun'ko, Polymer composites with functionalized silica, in Polymer Composites with Functionalized Nanoparticles. 2019, Elsevier. pp.119-148.

DOI: 10.1016/b978-0-12-814064-2.00004-4

Google Scholar

[46] Y. Prykhodko, K. Fatyeyeva, L. Hespel, and S. Marais, Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chemical Engineering Journal, 2021. 409: p.127329.

DOI: 10.1016/j.cej.2020.127329

Google Scholar

[47] D. Qiu, L. Peng, X. Lai, M. Ni, and W. Lehnert, Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell. Renewable and Sustainable Energy Reviews, 2019. 113: p.109289.

DOI: 10.1016/j.rser.2019.109289

Google Scholar

[48] R.K. Sanjaya, I.R. Juliandri, N. Ismillayli, and D. Hermanto, Chemical Degradation Of Nafion Membranes Under Pemfc as Investigated by DFT Method. 2019.

DOI: 10.17146/jsmi.2020.21.2.5582

Google Scholar

[49] G. Xu, X. Dong, B. Xue, J. Huang, J. Wu, and W. Cai, Recent Approaches to Achieve High Temperature Operation of Nafion Membranes. Energies, 2023. 16(4): p.1565.

DOI: 10.3390/en16041565

Google Scholar

[50] J. Escorihuela, R. Narducci, V. Compañ, and F. Costantino, Proton conductivity of composite polyelectrolyte membranes with metal‐organic frameworks for fuel cell applications. Advanced Materials Interfaces, 2019. 6(2): p.1801146.

DOI: 10.1002/admi.201801146

Google Scholar

[51] N. Ismail, W. Salleh, A. Ismail, H. Hasbullah, N. Yusof, F. Aziz, and J. Jaafar, Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Separation and Purification Technology, 2020. 233: p.116007.

DOI: 10.1016/j.seppur.2019.116007

Google Scholar

[52] Q. Chen, G. Zhang, X. Zhang, C. Sun, K. Jiao, and Y. Wang, Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability. Applied Energy, 2021. 286: p.116496.

DOI: 10.1016/j.apenergy.2021.116496

Google Scholar

[53] R. Sigwadi, T. Mokrani, M.S. Dhlamini, P. Nonjola, and P.F. Msomi, Nafion®/sulfated zirconia oxide-nanocomposite membrane: The effects of ammonia sulfate on fuel permeability. Journal of polymer research, 2019. 26: pp.1-14.

DOI: 10.1007/s10965-019-1760-2

Google Scholar

[54] H. Alnaqbi, E.T. Sayed, S. Al-Asheh, A. Bahaa, H. Alawadhi, and M.A. Abdelkareem, Current progression in graphene-based membranes for low temperature fuel cells. International Journal of Hydrogen Energy, 2022.

DOI: 10.1016/j.ijhydene.2022.03.255

Google Scholar

[55] K. Wan, B. Jiang, T. Tan, H. Wang, and M. Liang, Surface‐Mediated Production of Complexed• OH Radicals and Fe O Species as a Mechanism for Iron Oxide Peroxidase‐Like Nanozymes. Small, 2022. 18(50): p.2204372.

DOI: 10.1002/smll.202204372

Google Scholar

[56] P.-J. Lin, C.-H. Yeh, and J.-C. Jiang, Theoretical insight into hydroxyl production via H 2 O 2 decomposition over the Fe 3 O 4 (311) surface. RSC advances, 2021. 11(57): pp.36257-36264.

DOI: 10.1039/d1ra06943h

Google Scholar

[57] X.X. Wang, V. Prabhakaran, Y. He, Y. Shao, and G. Wu, Iron‐free cathode catalysts for proton‐exchange‐membrane fuel cells: cobalt catalysts and the peroxide mitigation approach. Advanced materials, 2019. 31(31): p.1805126.

DOI: 10.1002/adma.201805126

Google Scholar

[58] D.C. Seo, I. Jeon, E.S. Jeong, and J.Y. Jho, Mechanical properties and chemical durability of nafion/sulfonated graphene oxide/cerium oxide composite membranes for fuel-cell applications. Polymers, 2020. 12(6): p.1375.

DOI: 10.3390/polym12061375

Google Scholar

[59] S. Ahmad, T. Nawaz, A. Ali, M.F. Orhan, A. Samreen, and A.M. Kannan, An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International Journal of Hydrogen Energy, 2022. 47(44): pp.19086-19131.

DOI: 10.1016/j.ijhydene.2022.04.099

Google Scholar

[60] V.V. Turov, T.V. Krupska, N.V. Guzenko, M.V. Borysenko, Y.M. Nychiporuk, and V.M. Gun'ko, Controlled confined space effects on clustered water bound to hydrophobic nanosilica with nonpolar and polar co-adsorbates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 644: p.128919.

DOI: 10.1016/j.colsurfa.2022.128919

Google Scholar

[61] A. Saha, K. Narula, P. Mishra, G. Biswas, and S. Bhakta, A facile cost-effective electrolyte-assisted approach and comparative study towards the Greener synthesis of silica nanoparticles. Nanoscale Advances, 2023. 5(5): pp.1386-1396.

DOI: 10.1039/d2na00872f

Google Scholar

[62] N. Esmaeili, E.M. Gray, and C.J. Webb, Non‐fluorinated polymer composite proton exchange membranes for fuel cell applications–A review. ChemPhysChem, 2019. 20(16): pp.2016-2053.

DOI: 10.1002/cphc.201900191

Google Scholar

[63] Y. Guo, J. Bae, Z. Fang, P. Li, F. Zhao, and G. Yu, Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews, 2020. 120(15): pp.7642-7707.

DOI: 10.1021/acs.chemrev.0c00345

Google Scholar

[64] W.W. Ng, H.S. Thiam, Y.L. Pang, K.C. Chong, and S.O. Lai, A State-of-Art on the development of Nafion-based membrane for performance improvement in direct methanol fuel cells. Membranes, 2022. 12(5): p.506.

DOI: 10.3390/membranes12050506

Google Scholar

[65] C. Wong, W. Wong, K. Ramya, M. Khalid, K. Loh, W. Daud, K. Lim, R. Walvekar, and A. Kadhum, Additives in proton exchange membranes for low-and high-temperature fuel cell applications: A review. International journal of hydrogen energy, 2019. 44(12): pp.6116-6135.

DOI: 10.1016/j.ijhydene.2019.01.084

Google Scholar

[66] H. Nguyen, C. Klose, L. Metzler, S. Vierrath, and M. Breitwieser, Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers: An engineering perspective. Advanced Energy Materials, 2022. 12(12): p.2103559.

DOI: 10.1002/aenm.202103559

Google Scholar

[67] G. Clarizia and P. Bernardo, Polyether block amide as host matrix for nanocomposite membranes applied to different sensitive fields. Membranes, 2022. 12(11): p.1096.

DOI: 10.3390/membranes12111096

Google Scholar

[68] K. Oh, O. Kwon, B. Son, D.H. Lee, and S. Shanmugam, Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition. Journal of Membrane Science, 2019. 583: pp.103-109.

DOI: 10.1016/j.memsci.2019.04.031

Google Scholar

[69] L. Liu, C. Wang, Z. He, D. Pan, B. Dong, S. Vupputuri, and Z. Guo, Revisiting Nafion membranes by introducing ammoniated polymer with norbornene to improve fuel cell performance. Journal of Power Sources, 2021. 506: p.230164.

DOI: 10.1016/j.jpowsour.2021.230164

Google Scholar

[70] R. Sigwadi, T. Mokrani, and P.F. Msomi, Nafion reinforced with polyacrylonitrile nanofibers/zirconium-graphene oxide composite membrane for direct methanol fuel cell application. Journal of Polymer Research, 2022. 29: pp.1-13.

DOI: 10.1007/s10965-021-02854-x

Google Scholar