The Study of Platinum Coated Carbon Nanotubes as Third-Order Nonlinear Optical Materials

Article Preview

Abstract:

Platinum-multiwall carbon nanotubes (Pt-MWCNTs) was prepared through a chemical reduction and was characterized by using UV–Vis Spectrophotometer, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM/EDX) and Raman Spectroscopy. Through this chemical reduction, Pt ions were reduced by the addition of sodium dodecyl sulfate (SDS) and Pt was in-situ deposited on the exterior walls of MWCNTs. TEM and FESEM/EDX analyses have confirmed the presence of Pt on the surface of MWCNTs. From Raman Spectroscopy, the ID/IG of MWCNT is 0.66 while ID/IG of Pt-MWCNT is 0.71, showing that not much defects were resulted by the functionalization of Pt on the surface of MWCNT, while from UV-Vis spectra, Pt-MWCNT is found to absorb at about 265 nm due to the presence of Pt nanoparticles that caused a weak surface plasmon resonance (SPR) absorption in the UV region which will contribute to the NLR measurement. The resulted Pt-MWCNTs was then investigated its third-order nonlinearity response as suspension in water using continuous wave laser and z-scan measurement at 532 nm. Pt-MWCNT displays good transmittance profile and self-defocusing effect with excitation intensity is in order of 10-9 cm2/W. The presence of Pt on the surface of MWCNT has contributed to intrinsic properties and resulted in nonlinear refractive (NLR) effect. Thus, Pt-MWCNT is considered to possess significant third-order nonlinear responses considering its low Pt content and has potential in the development of photonics devices.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 317)

Pages:

166-172

Citation:

Online since:

May 2021

Export:

Price:

* - Corresponding Author

[1] C. Zheng, M. Feng, Y. Du, H. Zhan, Synthesis and third-order nonlinear optical properties of a multiwalled carbon nanotube–organically modified silicate nanohybrid gel glass, Carbon 47 (2009) 2889–2897.

DOI: 10.1016/j.carbon.2009.06.033

Google Scholar

[2] R. Sreeja, P. M. Aneesh, K. Hasna, M. K. Jayaraj, Linear and Nonlinear Optical Properties of Multi Walled Carbon Nanotubes with Attached Gold Nanoparticles, J. Electrochem. Soc. 158 (10) (2011) K187–K191.

DOI: 10.1149/1.3622666

Google Scholar

[3] K. C. Chin, A. Gohel, H. I. Elim, W. Chen, W. Ji, G. L. Chong, C. H. Sow, A. T. S. Wee, Modifed Carbon Nanotubes as Broadband Optical Limiting Nanomaterials, J. Mater. Res. 21 (11) (2006) 2758–2766.

DOI: 10.1557/jmr.2006.0338

Google Scholar

[4] X. Sun, Y. Xiong, P. Chen, J. Lin, W. Ji, J. H. Lim, S. S. Yang, D. J. Hagan, E. W. V. Stryland, Investigation of an Optical Limiting Mechanism in Multiwalled Carbon Nanotubes, Appl. Opt. 39 (12) (2000) 1998–(2001).

DOI: 10.1364/ao.39.001998

Google Scholar

[5] B. Anand, S. A. Ntim, V. S. Muthukumar, S. S. S. Sai, R. Philip, S. Mitra, Improved optical limiting in dispersible carbon nanotubes and their metal oxide hybrids, Carbon 49 (2011) 4767–4773.

DOI: 10.1016/j.carbon.2011.06.086

Google Scholar

[6] C. D-W. Chin, S. Akbarian-Tefaghi, J. Reconco-Ramirez, J. B. Wiley, Rapid microwave synthesis and optical activity of highly crystalline platinum nanocubes, MRS Commun. 8 (2018) 71-78.

DOI: 10.1557/mrc.2017.137

Google Scholar

[7] J.A. Creighton, D.G. Eadon, Ultraviolet–visible absorption spectra of the colloidal metallic elements. J. Chem. Soc. Faraday Trans. 87 (1991) 3881.

DOI: 10.1039/ft9918703881

Google Scholar

[8] M. H. Mezher, W. Y. Chong, R. Zakaria, Nonlinear optical response of platinum nanostructures and application for water detection in transformer oil, RSC Adv. 6 (2016) 104624.

DOI: 10.1039/c6ra22367b

Google Scholar

[9] A. Solhy, B. F. Machado, J. Beausoleil, Y. Kihn, F. Gonçalves, M. F. R. Pereira, J. J.M. Órfão, J. L. G. Figueiredo, J. L. Faria, P. Serp, MWCNT activation and its influence on the catalytic performance of Pt-MWCNT catalysts for selective hydrogenation, Carbon 46 (9) (2008) 1194 – 1207.

DOI: 10.1016/j.carbon.2008.04.018

Google Scholar

[10] M. Eguchi, S. Yamamoto, M. Kikuchi, K. Uno, Y. Kobayashi, M. Nishitani-Gamo, T. Ando, Characterization of multi-walled carbon nanotube-supported Pt catalyst prepared by metal nanocolloidal solution for a polymer electrolyte fuel cell catalyst, J. Surf. Finish. Soc. Jpn, 62 (2011) 179–183.

DOI: 10.4139/sfj.62.179

Google Scholar

[11] T.C. Chou, K.Y. Wu, F.X. Hsu, C.K. Lee, Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food, J. Food Drug Anal. 26 (2018) 662–669.

DOI: 10.1016/j.jfda.2017.08.005

Google Scholar

[12] A. K. Fikriyyah, E. R. Chaldun, Indriyati, Synthesis and properties of platinum on multiwall carbon nanotube modified by chitosan, J. Phys.: Conf. Ser. 985 (2018) 012057.

DOI: 10.1088/1742-6596/985/1/012057

Google Scholar

[13] W. M. Daoush, T. Imae, Fabrication of PtNi bimetallic nanoparticles supported on multi-walled carbon nanotubes, J. Exp. Nanosci. 10 (5) (2015) 392–406.

DOI: 10.1080/17458080.2013.838703

Google Scholar

[14] J. A. García-Merino, E. Jiménez-Marín, C. Mercado-Zúñiga, M. Trejo-Valdez, J. R. Vargas-García, C. Torres-Torres. Quantum and bistable magneto-conductive signatures in multiwall carbon nanotubes decorated with bimetallic Ni and Pt nanoparticles driven by phonons, OSA Continuum 2 (2019) 1285–1295.

DOI: 10.1364/osac.2.001285

Google Scholar

[15] M. F. Zaini, S. Arshad, K. Thanigaimani, N. C. Khalib, D. A. Zainuri, M. Abdullah, I. A. Razak, New halogenated chalcones: Synthesis, crystal structure, spectroscopic and theoretical analyses for third-order nonlinear optical properties, J. Mol. Struct. 1195 (2019) 606-619.

DOI: 10.1016/j.molstruc.2019.05.122

Google Scholar

[16] Y. Yusof, M. I. Zaidi, M. R. Johan. Enhanced Structural, Thermal, and Electrical Properties of Multiwalled Carbon Nanotubes Hybridized with Silver Nanoparticles, J. Nanomater. (2016) 1–9.

DOI: 10.1155/2016/6141496

Google Scholar

[17] Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, C. Lin, Selective Heterogeneous Nucleation and Growth of Size‐Controlled Metal Nanoparticles on Carbon Nanotubes in Solution, Chem. Eur. J. 12(9) (2006) 2542–2549.

DOI: 10.1002/chem.200501010

Google Scholar

[18] S. Costa, E. Borowiak-Palen, M. Kruszyńska, A. Bachmatiuk, R. J. Kaleńczuk, Characterization of carbon nanotubes by Raman spectroscopy, Mater. Sci.-Poland 26(2) (2008) 433–441.

Google Scholar

[19] J. Xu, T. Zhao, Z. Liang, Synthesis of Active Platinum−Silver Alloy Electrocatalyst toward the Formic Acid Oxidation Reaction, J. Phys. Chem. C. 112(44) (2008)17362-17367.

DOI: 10.1021/jp8063933

Google Scholar

[20] T. B. Nguyen, T. D. Nguyen, Q. D. Nguyen, T. T. Nguyen, Preparation of platinum nanoparticles in liquids by laser ablation method, Adv. Nat. Sci: Nanosci. Nanotechnol. 5 (2014) 1–5.

DOI: 10.1088/2043-6262/5/3/035011

Google Scholar

[21] I. R. Whittall, A. M. McDonagh, M. G. Humphrey, M. Samoc, Organometallic Complexes in Nonlinear Optics II: Third-Order Nonlinearities and Optical Limiting Studies, Adv. Organomet. Chem. 43 (1999) 349–405.

DOI: 10.1016/s0065-3055(08)60673-5

Google Scholar