Hardness Prediction of AA 2024-T3 FSW Weld

Article Preview

Abstract:

The hardness of AA 2024 is mainly dependent of the precipitation state in the material. This one will vary through the process of friction stir welding (FSW) which generates heat and deformations. The most important effect will be the thermal excursion which greatly affects the nature and the distribution of precipitates and so the mechanical properties of the material. Three Myhr & Grong-type submodels have been used in this study in order to simulate the variation of hardness in AA 2024-T3 FSW welds. These models allowed to simulate the hardening by growth of S-precipitates and the softening by coarsening and dissolution of GPB zones / co-clusters or S-precipitates. Finally, the natural ageing was taken into account following the Robson model. The complete model has been calibrated with isothermal data found in the literature and still has to be optimised. Nevertheless, preliminary results show the coherence of the model when performed on isothermal data. The model has been also applied to predict FSW hardness profiles that are compared to those found in the literature.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1857-1862

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] R. S. Mishra et H. Sidhar, Friction Stir Welding of 2XXX Aluminum Alloys including Al-Li Alloys. Elsevier Science, (2016).

DOI: 10.1016/b978-0-12-805368-3.00001-7

Google Scholar

[2] E. Hersent, « Modélisation intégrée de la précipitation pour le soudage par friction malaxage d'alliages d'aluminium à durcissement structural », Ecole Nationale Supérieure des Mines Saint-Etienne, (2010).

Google Scholar

[3] V. Legrand, « Modélisation des processus de précipitation et prédiction des propriétés mécaniques résultantes dans les alliages d'aluminium à durcissement structural : Application au soudage par Friction Malaxage (FSW) de tôles AA2024 », Ecole Nationale Supérieure des Mines de Paris, (2015).

DOI: 10.51257/a-v2-bm7764

Google Scholar

[4] O. R. Myhr et Ø. Grong, « Process modelling applied to 6082-T6 aluminium weldments—I. Reaction kinetics », Acta Metallurgica et Materialia, 39 (1991), no 11, 2693‑2702.

DOI: 10.1016/0956-7151(91)90085-f

Google Scholar

[5] H. R. Shercliff, M. J. Russell, A. Taylor, et T. L. Dickerson, « Microstructural modelling in friction stir welding of 2000 series aluminium alloys », Mécanique & Industries, 6 (2005), no 1, 25‑35.

DOI: 10.1051/meca:2005004

Google Scholar

[6] Z. Zhang, B. L. Xiao, et Z. Y. Ma, « Hardness recovery mechanism in the heat-affected zone during long-term natural aging and its influence on the mechanical properties and fracture behavior of friction stir welded 2024Al–T351 joints », Acta Materialia, 73 (2014), 227‑239.

DOI: 10.1016/j.actamat.2014.04.021

Google Scholar

[7] C. Genevois, D. Fabrègue, A. Deschamps, et W. J. Poole, « On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy », Materials Science and Engineering: A, 441 (2006), no 1‑2, 39‑48.

DOI: 10.1016/j.msea.2006.07.151

Google Scholar

[8] M. R. Sonne, C. C. Tutum, J. H. Hattel, A. Simar, et B. de Meester, « The effect of hardening laws and thermal softening on modeling residual stresses in FSW of aluminum alloy 2024-T3 », Journal of Materials Processing Technology, 213 (2013), no 3, 477‑486.

DOI: 10.1016/j.jmatprotec.2012.11.001

Google Scholar

[9] R. M. F. Paulo, P. Carlone, V. Paradiso, R. A. F. Valente, et F. Teixeira-Dias, « Prediction of friction stir welding effects on AA2024-T3 plates and stiffened panels using a shell-based finite element model », Thin-Walled Structures, 120 (2017), 297‑306.

DOI: 10.1016/j.tws.2017.09.009

Google Scholar

[10] J. D. Robson et A. Sullivan, « Process model for strength of age hardenable aluminium alloy welds », Materials Science and Technology, 22 (2006), no 2, 146‑152.

DOI: 10.1179/174328406x81603

Google Scholar