The Influence of the Sintering Temperature on the Properties of the 0.98Pb(Zr1-xTix)O3 - 0.02La(Fe3+0.5, Nb5+0.5)O3 Ceramic Systems

Article Preview

Abstract:

The ferroelectric solid solutions described by a general formula 0.98Pb(Zr1-xTix)O3 – 0.02La(Fe3+0.5, Nb5+0.5)O3 have been obtained by solid state reaction technique, where x assumes the following values: 0.42, 0.48 and 0.58. The structure of these ferroelectric compositions has been investigated in detail using X-ray diffraction analysis (XRD) and Scanning Electron Microscopy (SEM). The results obtained by XRD have evidenced that all obtained samples have a perovskite structure. The influence of the sintering temperature on the degree of incorporation of the elements in the solid solution have been studied too. The dielectric and piezoelectric constants have been determined and the influence of temperature on obtained values are presented and discussed. The performed experimental results have pointed out that the materials are characterized by a high anisotropy. Furthermore, the obtained values of the electromechanical coupling factor (kp) is situated between 0.40÷0.65 depending on the composition and the sintering temperature too.

You might also be interested in these eBooks

Info:

Periodical:

Materials Science Forum (Volume 1016)

Pages:

1134-1140

Citation:

Online since:

January 2021

Export:

Price:

* - Corresponding Author

[1] J. Deng, W. Zhu, O. Tan & X. Yao, Amorphous Pb(Zr, Ti)O3 thin film hydrogen gas sensor, Sensors and Actuators B: Chemical, 77(1-2), (2001) 416–420.

DOI: 10.1016/s0925-4005(01)00707-9

Google Scholar

[2] E. Flint, C. Liang & C.A. Rogers, Electromechanical Analysis of Piezoelectric Stack Active Member Power Consumption, Journal of Intelligent Material Systems and Structures, 6(1), (1995) 117–124.

DOI: 10.1177/1045389x9500600115

Google Scholar

[3] F.P. Sun, Z. Chaudhry, C. Liang & C.A. Rogers, Truss Structure Integrity Identification Using PZT Sensor-Actuator, Journal of Intelligent Material Systems and Structures, 6(1), (1995) 134–139.

DOI: 10.1177/1045389x9500600117

Google Scholar

[4] Q. Tan & D. Viehland, Influence of Thermal and Electrical Histories on Domain Structure and Polarization Switching in Potassium-Modified Lead Zirconate Titanate Ceramics, Journal of the American Ceramic Society, 81(2), (2005) 328–336.

DOI: 10.1111/j.1151-2916.1998.tb02338.x

Google Scholar

[5] L. Pislaru-Danescu, L.C. Lipan, I. Pisica, I.D. Ilina & A. Dumitru, New energy harvesting systems, designed for new piezoelectric transducers, with charging energy management, International Conference and Exposition on Electrical and Power Engineering (EPE), (2014).

DOI: 10.1109/icepe.2014.6969989

Google Scholar

[6] B. Noheda & D.E. Cox, Bridging phases at the morphotropic boundaries of lead oxide solid solutions, Phase Transitions, 79(1-2), (2006) 5–20.

DOI: 10.1080/01411590500467262

Google Scholar

[7] M. Hinterstein, M. Hoelzel, J. Rouquette, J. Haines, J. Glaum, H. Kungl & M. Hoffman, Interplay of strain mechanisms in morphotropic piezoceramics, Acta Materialia, 94, (2015) 319–327.

DOI: 10.1016/j.actamat.2015.04.017

Google Scholar

[8] A. Mirzaei, M. Bonyani & S. Torkian, Effect of Nb doping on sintering and dielectric properties of PZT ceramics, Processing and Application of Ceramics, 10 (3), (2016) 175–182.

DOI: 10.2298/pac1603175m

Google Scholar

[9] A. Albareda, R. Pérez, J. E. García, D. A. Ochoa, V. Gomis & J. A. Eiras, Influence of donor and acceptor substitutions on the extrinsic behaviour of PZT piezoceramics, Journal of the European Ceramic Society, 27(13-15), (2007) 4025–4028.

DOI: 10.1016/j.jeurceramsoc.2007.02.087

Google Scholar

[10] B. Praveen Kumar, S.R. Sangawar & H.H. Kumar, Structural and electrical properties of double doped (Fe3+ and Ba2+) PZT electroceramics, Ceramics International, 40, (2014) 3809-3812.

DOI: 10.1016/j.ceramint.2013.08.014

Google Scholar

[11] P.-H. Xiang, N. Zhong, X.-L. Dong, R.-H. Liang, H. Yang & C.-D. Feng, Fabrication and dielectric properties of lanthanum-modified lead zirconate titanate using coprecipitation powder coating, Materials Letters, 58(21), (2004) 2675–2678.

DOI: 10.1016/j.matlet.2004.04.004

Google Scholar

[12] J.E. Garcia, R. Pe´rez, A. Albareda, J.A. Eiras, Non-linear dielectric and piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system, Journal of the European Ceramic Society, 27, (2007) 4029–4032.

DOI: 10.1016/j.jeurceramsoc.2007.02.086

Google Scholar

[13] R. Rai, S. Sharma & R.N.P. Choudhary, Dielectric and piezoelectric studies of Fe doped PLZT ceramics, Materials Letters, 59 (29-30), (2005) 3921–3925.

DOI: 10.1016/j.matlet.2005.07.034

Google Scholar

[14] H. Takeuchi, S. Jyomura & C. Nakaya, New piezoelectric materials for ultrasonic transducers, Japanese Journal Applied Physics, 24(24-2), (1985) 36–40.

DOI: 10.7567/jjaps.24s2.36

Google Scholar