Extracting Metals with Carbon Nanotubes: Environmental Possibilities

Article Preview

Abstract:

This paper presents a review of the environmental possibilities of using carbon nanotubes (CNTs) for extracting metals, taken into account the characteristics of carbon nanotubes to be used as adsorbents and the influence of different factors on the adsorption processes, among them: kind of carbon nanotubes used as adsorbent, particle size, pH of solutions and diameter and length of carbon nanotubes. Also, some images of transmission electron microscopy (TEM), atomic force microscopy (AFM) and molecular modeling (Materials Studio Software) obtained by our research group are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-165

Citation:

Online since:

September 2015

Export:

Price:

* - Corresponding Author

[1] S. Iijima. Helical microtubules of graphitic carbon, Nature 354 (1991) 56-58.

DOI: 10.1038/354056a0

Google Scholar

[2] F.J. Alguacil, A. Cerpa, M.I. Lado, F.A. López. Technologies for the 21st century: carbon nanotubes as adsorbents of metals. Revista de Metalurgía, 50 (3) (2014) July-September, e025.

DOI: 10.3989/revmetalm.025

Google Scholar

[3] A. Gadhave, J. Waghmare. Removal of heavy metal ions from wastewater by carbon nanotubes (CNTs). International Journal of Chemical Science and Application, Vol 5, Issues 2 (2014) 56-67.

Google Scholar

[4] S.S. Bayazit, I. Inci. Adsorption of Pb(II) ions from aqueous solutions by carbon nanotubes oxidized different methods. Journal of Industrial and Engineering Chemistry 19 (2013) 2064-(2071).

DOI: 10.1016/j.jiec.2013.03.023

Google Scholar

[5] I. Mobasherpour, E. Salahi, M. Ebrahimi. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nanotubes: equilibrium and kinetic processes. Res. Chem. Intermed. 38(2012) 2205-2222.

DOI: 10.1007/s11164-012-0537-6

Google Scholar

[6] M. Bahgat, A.A. Farghali, W.M.A. El Rouby, M.H. Khedr. Synthesis and modification of multi-walled carbon nano-tubes (MWCNTs) for water treatment applications. Journal of Analytical and Applied Pyrolysis 92 (2011) 307-313.

DOI: 10.1016/j.jaap.2011.07.002

Google Scholar

[7] A. Cerpa, M. Köber, D. Calle, V. Negri, J. M. Gavira, A. Hernanz, F. Briones, S. Cerdán, P. Ballesteros. Oxidized Single-Walled Carbon Nanotubes as Anisotropic Probes for Magnetic Resonance Imaging. Med. Chem Comm, 4 (2013) 669-672.

DOI: 10.1039/c3md20235f

Google Scholar

[8] S. Agnihotri, J.P.B. Mota, M. Rostam-Abadi, M.J. Rood. Theoretical and experimental investigation of morphology and temperature effects on adsorption of organic vapors in single-walled carbon nanotubes. Journal of Physical Chemistry B, 110 (2006).

DOI: 10.1021/jp060040a

Google Scholar

[9] J.T. Burde, M.M. Calbi. Physisorption kinetics in carbon nanotube bundles. Journal of Physical Chemistry C, 111 (2007) 5057–5063.

DOI: 10.1021/jp065428k

Google Scholar

[10] R.Q. Long, R.T. Yang. Carbon nanotubes as a superior sorbent for nitrogen oxides. Industrial and Engineering Chemistry Research, 40 (2001) 4288–4291.

DOI: 10.1021/ie000976k

Google Scholar

[11] S. Srivastava. Sorption of divalent metal ions from aqueous solution by oxidized carbon nanotubes and nanocages: A review. Adv. Mat. Lett. 4(1) (2013) 2-8.

DOI: 10.5185/amlett.2013.icnano.110

Google Scholar

[12] F.J. Alguacil, F.A. López, T. Álvarez, P. Adeva, A. Cerpa, M.I. Lado. Utilización de nanotubos de carbono para la eliminación de metales tóxicos en aguas. XII Congreso Nacional de Medioambiente, CONAMA, Madrid, (2014).

Google Scholar

[13] K. Pyrzynska. Sorption of Cd(II) onto carbon-based materials-a comparative study. Microchim. Acta 169, (2010) 7-13.

DOI: 10.1007/s00604-010-0305-5

Google Scholar

[14] G.D. Vukovic, A.D. Marinkovic, S.D. Skapin, M.D. Ristic, R. Aleksic, A.A. Peric-Grujic, P. S. Uskokovic. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chemical Engineering Journal, 173 (2011) 855-865.

DOI: 10.1016/j.cej.2011.08.036

Google Scholar

[15] I. Mobasherpour, E. Salahi, M. Ebrahimi. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nanotubes: equilibrium and kinetic processes. Res. Chem. Intermed. 38 (2012) 2205-2222.

DOI: 10.1007/s11164-012-0537-6

Google Scholar

[16] S. Yang, J. Li, D. Shao, J. Hu, X. Wang. Adsorption of Ni(II) on oxidized multiwalled carbon nanotubes: effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 166 (2009) 109-116.

DOI: 10.1016/j.jhazmat.2008.11.003

Google Scholar

[17] C.Y. Lu, C.T. Liu, F.S. Su. Sorption kinetics, thermodynamics and competition of Ni2+ from aqueous solutions onto surface oxidized carbon nanotubes. Desalination, 249 (2009) 18-23.

DOI: 10.1016/j.desal.2009.06.009

Google Scholar

[18] Y. Tian, B. Gao, V.L. Morales, L. Wu, Y. Wang, R. Muñoz-Carpena, C. Cao, Q. Huang, L. Yang. Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chemical Engineering Journal, 210 (2012) 557-563.

DOI: 10.1016/j.cej.2012.09.015

Google Scholar

[19] Chen, L., Yu, S., Liu, B., Zuo, L. Removal of radiocobalt from aqueous solution by different sized carbon nanotubes. J. Radioanal. Nucl. Chem. 292 (2012) 785-791.

DOI: 10.1007/s10967-011-1514-z

Google Scholar

[20] V.K. Gupta, S. Agarwal, T.A. Saleh. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Research 45 (2011a) 2207-2212.

DOI: 10.1016/j.watres.2011.01.012

Google Scholar

[21] H.D. Liang, D.M. Han. Multi-Walled Carbon Nanotubes as Sorbent for Flow Injection OnLine Microcolumn Preconcentration Coupled with Flame Atomic Absorption Spectrometry for Determination of Cadmium and Copper. Anal. Lett. 39 (2006) 2285.

DOI: 10.1080/00032710600755579

Google Scholar

[22] A.H. El-Sheikh, J.A. Sweileh, Y.S. Al-Degs. Effect of dimensions of multi-walled carbon nanotubes on its enrichment efficiency of metal ions from environmental waters. Analytica Chimica Acta 604 (2007) 119-126.

DOI: 10.1016/j.aca.2007.10.009

Google Scholar

[23] C. Lu, C. Liu. Removal of nickel (II) from aqueous solution by carbon nanotubes. Journal of Chemical Technology and Biotechnology, 81 (2006) 1932–(1940).

DOI: 10.1002/jctb.1626

Google Scholar

[24] Y.H. Li, Y. Zhu, Y. Zhao, D. Wu, Z. Luan. Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diamond and Related Materials, 15 (2006) 90–94.

DOI: 10.1016/j.diamond.2005.07.004

Google Scholar

[25] D.K. Venkata Ramana, J.S. Yu, K. Seshaiah. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu(II) and Cd(II) from water: Surface, kinetic, equilibrium and thermal adsorption properties. Chemical Engineering Journal, 223 (2013).

DOI: 10.1016/j.cej.2013.03.001

Google Scholar

[26] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao, Q.Y. Yue. Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Separation and Purification Technology, 58 (2007) 17-23.

DOI: 10.1016/j.seppur.2007.07.006

Google Scholar

[27] J.C. Moreno-Pirajan, R. Gómez-Cruz, V.S. García-Cuello, L. Giraldo. Binary system Cu(II)/Pb(II) adsorption on activated carbon obtained by pyrolysis of cow bone study. Journal of Analytical and Applied Pyrolysis, 89 (2010) 122–128.

DOI: 10.1016/j.jaap.2010.06.007

Google Scholar