Preparation and Electrochemical Properties of Flow-Through TiO2 Nanoarray

Article Preview

Abstract:

Microstructure-tailored TiO2 nanoarrays with adjustive wall-hole morphology have been designed to improve electrochemical properties. Tubular, porous and flow-through TiO2 nanoarrays are fabricated by one-stepped, two-stepped and three-stepped anodization process under the controlled reaction condition. Tubular nanoarray with the opened-mouth and closed-bottom has a tube diameter of 120-130nm, a length of 8.12μm, and wall thickness of 15nm. Similarly, porous TiO2 nanoarray with the opened-mouth and closed-bottom has a pore diameter of 60-70nm, a length of 8.25μm, neighboring wall distance of 70-80nm. Comparatively, flow-through TiO2 nanoarray with the opened-mouth and opened-bottom has a pore diameter of 110-120nm, a length of 8.56μm, neighboring wall distance of 40nm. In comparison with tubular and porous TiO2 nanoarrays, flow-through TiO2 nanoarray indicates the deceased charge transfer resistance and diffusion-related Warburg impedance, presenting the enhanced current response at the same electrode potential. Accordingly, bottom-opened flow-through TiO2 nanoarray achieves the specific capacitance of 6.35 mF cm-2, which is higher than the bottom-closed tubular and porous TiO2 nanoarrays (2.94 and 3.78 mF cm-2). The flow-through TiO2 nanoarray presents the improved electrochemical performance for the electrochemical energy-storage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-12

Citation:

Online since:

December 2020

Authors:

Export:

Price:

* - Corresponding Author

[1] Xu J, Ruan C, Li P and Xie Y, Excessive nitrogen doping of tin dioxide nanorod array grown on activated carbon fibers substrate for wire-shaped microsupercapacitor, Chem. Eng. J., 378 (2019) 14.

DOI: 10.1016/j.cej.2019.122064

Google Scholar

[2] Xie Y, Electrochemical Performance of Transition Metal-coordinated Polypyrrole: A Mini Review, Chem. Rec., 19 (2019) 1370-1384.

DOI: 10.1002/tcr.201800192

Google Scholar

[3] Ruan C, Li P, Xu J, Chen Y and Xie Y, Activation of carbon fiber for enhancing electrochemical performance, Inorg. Chem. Front., 6 (2019) 3583-3597.

DOI: 10.1039/c9qi01028a

Google Scholar

[4] Li P, Ruan C, Xu J and Xie Y, Enhanced capacitive performance of CoO-modified NiMoO4 nanohybrid as advanced electrodes for asymmetric supercapacitor, J. Alloys Compd., 791 (2019) 152-165.

DOI: 10.1016/j.jallcom.2019.03.274

Google Scholar

[5] Li P, Ruan C, Xu J and Xie Y, Supercapacitive performance of CoMoO4 with oxygen vacancy porous nanosheet, Electrochim. Acta, 330 (2020) 135334.

DOI: 10.1016/j.electacta.2019.135334

Google Scholar

[6] Mu Y and Xie Y, Theoretical and Experimental Comparison of Electrical Properties of Nickel (II) Coordinated and Protonated Polyaniline, J. Phys. Chem. C, 123 (2019) 18232-18239.

DOI: 10.1021/acs.jpcc.9b04550

Google Scholar

[7] Chen Y and Xie Y, Electrochemical Performance of Manganese Coordinated Polyaniline, Advanced Electronic Materials, 5 (2019) 1900816.

DOI: 10.1002/aelm.201900816

Google Scholar

[8] Wang Y and Xie Y, Electroactive FeS2-modified MoS2 nanosheet for high-performance supercapacitor, J. Alloys Compd., 824 (2020) 18.

DOI: 10.1016/j.jallcom.2020.153936

Google Scholar

[9] Lu L and Xie Y, Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage, J. Mater. Sci., 54 (2019) 4842-4858.

DOI: 10.1007/s10853-018-03185-x

Google Scholar

[10] Li P, Ruan C, Xu J and Xie Y, A high-performance asymmetric supercapacitor electrode based on a three-dimensional ZnMoO4/CoO nanohybrid on nickel foam, Nanoscale, 11 (2019) 13639-13649.

DOI: 10.1039/c9nr03784e

Google Scholar

[11] Ruan C, Li P, Xu J and Xie Y, Electrochemical performance of hybrid membrane of polyaniline layer/full carbon layer coating on nickel foam, Prog. Org. Coat., 139 (2020) 12.

DOI: 10.1016/j.porgcoat.2019.105455

Google Scholar

[12] Mu Y, Ruan C, Li P, Xu J and Xie Y, Enhancement of electrochemical performance of cobalt (II) coordinated polyaniline: A combined experimental and theoretical study, Electrochim. Acta, 338 (2020) 11.

DOI: 10.1016/j.electacta.2020.135881

Google Scholar

[13] Xu S P and Lei Y, Template-Assisted Fabrication of Nanostructured Arrays for Sensing Applications, Chempluschem, 83 (2018) 741-755.

DOI: 10.1002/cplu.201800127

Google Scholar

[14] Mohan L, Dennis C, Padmapriya N, Anandan C and Rajendran N, Effect of Electrolyte Temperature and Anodization Time on Formation of TiO2 Nanotubes for Biomedical Applications, Mater. Today Comm., 23 (2020) 101103.

DOI: 10.1016/j.mtcomm.2020.101103

Google Scholar

[15] Heng I, Low F W, Lai C W, Juan J C and Tiong S K, Hybrid Graphene Titanium Nanocomposites and Their Applications in Energy Storage Devices: a Review, J. Electron. Mater., 49 (2020) 1777-1786.

DOI: 10.1007/s11664-019-07791-6

Google Scholar

[16] Wang H, Lu J, Liu L, Cui W and Liang Y, Ultra-thin rGO nanosheet modified TiO2 nanotube arrays for boosted photoelectrochemical performance, Appl. Surf. Sci., 506 (2020) 144966.

DOI: 10.1016/j.apsusc.2019.144966

Google Scholar

[17] Li S, Liu C, Chen P, Lv W and Liu G, In-situ stabilizing surface oxygen vacancies of TiO2 nanowire array photoelectrode by N-doped carbon dots for enhanced photoelectrocatalytic activities under visible light, J. Catal., 382 (2020) 212-227.

DOI: 10.1016/j.jcat.2019.12.030

Google Scholar

[18] Zhong P, Chen X, Niu B, Li C, Wang Y, Xi H, Lei Y, Wang Z and Ma X, Niobium doped TiO2 nanorod arrays as efficient electron transport materials in photovoltaic, J. Power Sources, 450 (2020) 227715.

DOI: 10.1016/j.jpowsour.2020.227715

Google Scholar

[19] Lai L, Lei E, Hu C, Zhao D, Zhao W, Guo Z and Huang D, A facile hydrothermal synthesis and properties of TiO2 nanosheet array films, Mater. Res. Express, 7 (2020) 015053.

DOI: 10.1088/2053-1591/ab638b

Google Scholar

[20] Sopha H and Macak J M, Recent advancements in the synthesis, properties, and applications of anodic self-organized TiO2 nanotube layers, Nanostructured Anodic Metal Oxides: Synthesis and Applications, (2020) 173.

DOI: 10.1016/b978-0-12-816706-9.00006-6

Google Scholar

[21] Jiang W, Liu Y, Liu F, Li F, Shen C, Yang B, Huang M, Liu J, Wang Z and Sand W, Ultra-fast detoxification of Sb (III) using a flow-through TiO2-nanotubes-array-mesh based photoelectrochemical system, Chem. Eng. J., 387 (2020) 124155.

DOI: 10.1016/j.cej.2020.124155

Google Scholar

[22] Liu G H, Wang K Y, Hoivik N and Jakobsen H, Progress on free-standing and flow-through TiO2 nanotube membranes, Sol. Energy Mater. Sol. Cells, 98 (2012) 24-38.

DOI: 10.1016/j.solmat.2011.11.004

Google Scholar

[23] So S, Hwang I, Riboni F, Yoo J and Schmuki P, Robust free standing flow-through TiO2 nanotube membranes of pure anatase, Electrochem. Commun., 71 (2016) 73-78.

DOI: 10.1016/j.elecom.2016.08.010

Google Scholar

[24] Ahirrao D J, Wilson H M and Jha N, TiO2-nanoflowers as flexible electrode for high performance supercapacitor, Appl. Surf. Sci., 491 (2019) 765-778.

DOI: 10.1016/j.apsusc.2019.05.076

Google Scholar

[25] Cao S K, Wu L Z, Huang W Q, Zhu X F, Shen X P and Song Y, Electrochemically Doped and Hydrogen Peroxide-Treated TiO2 Nanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability, J. Electrochem. Soc., 166 (2019) A1944-A1949.

DOI: 10.1149/2.0841910jes

Google Scholar

[26] Pant B, Park M and Park S J, TiO2 NPs Assembled into a Carbon Nanofiber Composite Electrode by a One-Step Electrospinning Process for Supercapacitor Applications, Polymers, 11 (2019).

DOI: 10.3390/polym11050899

Google Scholar

[27] Qorbani M, Khajehdehi O, Sabbah A and Naseri N, Ti-rich TiO2 Tubular Nanolettuces by Electrochemical Anodization for All-Solid-State High-Rate Supercapacitor Devices, Chemsuschem, 12 (2019) 4064-4073.

DOI: 10.1002/cssc.201901302

Google Scholar

[28] Li T, Shen Z, Shu Y, Li X, Jiang C and Chen W, Facet-dependent evolution of surface defects in anatase TiO2 by thermal treatment: implications for environmental applications of photocatalysis, Environ. Sci.: Nano, 6 (2019) 1740-1753.

DOI: 10.1039/c9en00264b

Google Scholar

[29] Xie Y and Yao C, Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material, Mater. Res. Express, 6 (2020) 11.

Google Scholar

[30] Xie Y and Zhang Y, Electrochemical performance of carbon paper supercapacitor using sodium molybdate gel polymer electrolyte and nickel molybdate electrode, J. Solid State Electrochem., 23 (2019) 1911-1927.

DOI: 10.1007/s10008-019-04260-2

Google Scholar

[31] Panda S K and Shin H, Electrochemical performance of amorphous and anatase TiO2 nanotube array-based anodes fabricated by atomic layer deposition, Mater. Res. Innovations, 19 (2016) S5-694-S5-699.

DOI: 10.1179/1432891714z.0000000001178

Google Scholar

[32] Ngaboyamahina E, Cachet H, Pailleret A and Sutter E, Electrochemical impedance spectroscopy characterization of conducting polymer/TiO2 nanotube array hybrid structures, J. Electroanal. Chem., 737 (2015) 37-45.

DOI: 10.1016/j.jelechem.2014.09.029

Google Scholar

[33] Xie Y and Zhou Y, Enhanced capacitive performance of activated carbon paper electrode material, J. Mater. Res., 34 (2019) 2472-2481.

DOI: 10.1557/jmr.2019.224

Google Scholar

[34] Fu N, Duan Y, Lu W, Zhu M, Zhang G, Xie D, Lin Y, Wei M and Huang H, Realization of ultra-long columnar single crystals in TiO2 nanotube arrays as fast electron transport channels for high efficiency dye-sensitized solar cells, J. Mater. Chem. A, 7 (2019) 11520–11529.

DOI: 10.1039/c9ta00241c

Google Scholar

[35] Xu J, Ruan C, Li P, Mu Y and Xie Y, S or N-monodoping and S,N-codoping effect on electronic structure and electrochemical performance of tin dioxide: Simulation calculation and experiment validation, Electrochim. Acta, 340 (2020) 135950.

DOI: 10.1016/j.electacta.2020.135950

Google Scholar