Chemical Functionalization of Carbon Nanotubes and its Effects on Electrical Conductivity

Article Preview

Abstract:

This work presents the study of the electrical conductivity in MWNT as a function of three different chemical functionalization conditions. Unmodified and chemically modified MWNT were characterized by microRaman spectroscopy, XPS and SEM whereas the electrical conductivity was determined by dust compression technique. MWNT were modified using three different oxidation conditions: (1) a mix of concentrated acids, H2SO4/HNO3 (3:1, v/v) sonicated for 2 h; (2) same mixture as (1) but using mechanical stirring for 6 h and (3) a reflux of an aqueous solution of HNO3 (20%, v/v) and mechanical stirring for 6 h. The characterization evidenced different functionalization degrees, based on the formation and detection of functional groups such as ether, carbonyl and carboxyl in different percentages. The unmodified CNT presented a conductivity of 510 S/m which decreased as the functionalization degree increased. For reactions (1) and (2) such conductivity was reduced by 8.8 and 15.5%, respectively, whereas for condition (3) it only decreased 0.98%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-61

Citation:

Online since:

June 2014

Export:

Price:

* - Corresponding Author

[1] M. Meyyappan, editor, Carbon nanotubes: Science and Applications, CRC Press, 2005.

Google Scholar

[2] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Fullerene pipes, Science 280 (1998) 1253-1256.

DOI: 10.1126/science.280.5367.1253

Google Scholar

[3] Y. J. Kim, T. S. Shin, H. D. Choi, J. H. Kwon, Y. C. Chung, H. G. Yoon, Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites, Carbon 43 (2005) 23-30.

DOI: 10.1016/j.carbon.2004.08.015

Google Scholar

[4] W. K. Park, J. H. Kim, S. S. Lee, J. Kim, G. W. Lee, M. Park, Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multiwalled carbon nanotubes/poly(methyl methacrylate) composites, Macromolecular Research 13 (2005) 206-211.

DOI: 10.1007/bf03219053

Google Scholar

[5] H. Park, J. Zhao, J. P. Lu, Effects of sidewall functionalization on conducting properties of single wall carbon nanotubes, Nano Letters 6 (2006) 916-919.

DOI: 10.1021/nl052488d

Google Scholar

[6] C. H. Lau, R. Cervini, S. R. Clarke, M.G. Markovic, J.G. Matisons, S.C. Hawkins, C.P. Huynh, G. P. Simon, The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes, J. Nanopart. Res. 10 (2008) 77-88.

DOI: 10.1007/s11051-008-9376-1

Google Scholar

[7] J. Zhang, H. Zou, Q. Quing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, Effect of chemical oxidation on the structure of single-walled carbon nanotubes, J. Phys. Chem. 107 (2003) 3712-3718.

DOI: 10.1021/jp027500u

Google Scholar

[8] K. Jiang, A. Eitan, L.S. Schadler, P.M. Ajayan, R.W. Siegel, Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes, Nano Letters 3 (2003) 275-277.

DOI: 10.1021/nl025914t

Google Scholar

[9] Y. Xing, L. Li, C.C. Chusuei, R.V. Hull, Sonochemical oxidation of multiwalled carbon nanotubes, Langmuir 21 (2005) 4185-4190.

DOI: 10.1021/la047268e

Google Scholar

[10] A. Eitan, K. Jiang, D. Dukes, R. Andrews, L.S. Schadler, Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites, Chem. Mater. 15 (2003) 3198-3202.

DOI: 10.1021/cm020975d

Google Scholar

[11] L. Stobinski, B. Lesiak, L. Kover, J. Tóth, S. Biniak, G. Trykowski, J. Judek, Multiwalled carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods, Journal of alloys and compounds 501 (2010) 77-84.

DOI: 10.1016/j.jallcom.2010.04.032

Google Scholar

[12] Y. Lin, A. M. Rao, B. Sadanadan, E. A. Kenik, Y. P. Sun, Functionalized multiple-walled carbon nanotubes with aminopolymers, J. Phys. Chem. B. 106 (2002) 1294-1298.

DOI: 10.1021/jp013501v

Google Scholar

[13] D. E. Hill, Y. Lin, A. M. Rao, L. F. Allard, Y. P. Sun, Functionalization of carbon nanotubes with polystyrene, Macromolecules 35 (2002) 9466-9471.

DOI: 10.1021/ma020855r

Google Scholar

[14] H. Kong, C. Gao, D. Yan, Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization, JACS 126 (2004) 412-413.

DOI: 10.1021/ja0380493

Google Scholar

[15] A.L. Bezanilla, F. Triozon, S. Latil, X. Blase, S. Roche, Effect of the chemical functionalization on charge transport in carbon nanotubes at the mesoscopic scale, Nano Letters 9 (2009) 940-944.

DOI: 10.1021/nl802798q

Google Scholar

[16] Y-S. Lee, N. Marzani, Cycloaddition functionalizations to preserve or control the conductance of carbon nanotubes, Physical Review Letters 97 (2006) 116801 (4pp).

DOI: 10.1103/physrevlett.97.116801

Google Scholar

[17] D. Bouilly, J. Cabana, R. Martel, Unaltered electrical conductance in single-walled carbon nanotubes functionalized with divalent adducts, Applied Physics Letters 101 (2012) 053116 (4pp).

DOI: 10.1063/1.4739495

Google Scholar

[18] B. Marinho, M. Ghislandi, E. Tkalya, C.E. Koning, G. de With, Electrical conductivity of compacts of graphene, multi-walled carbon nanotubes, carbon black and graphite powder, Powder Technology 221 (2012) 351-358.

DOI: 10.1016/j.powtec.2012.01.024

Google Scholar

[19] A. Celzard, J.F. Mareche, F. Payot, G. Furdin, Electrical conductivity of carbonaceous powder, Carbon 40 (2002) 2801-2815.

DOI: 10.1016/s0008-6223(02)00196-3

Google Scholar

[20] Y. P. Mamunya, H. Zois, L. Apekis, E. V. Lebedev, Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites, Powder Technology 140 (2004) 49.

DOI: 10.1016/j.powtec.2003.11.010

Google Scholar

[21] S. Hernández López, E. Vigueras Santiago, Acrylated-Epoxidized Soybean Oil-Based Polymers and Their Use in the Generation of Electrically Conductive Polymer Composites, in: Hany A. El-Shemy (Ed.), Soybean - Bio-Active Compounds, InTech, Rijeka, Croatia, 2013, pp.251-252.

DOI: 10.5772/52992

Google Scholar

[22] M. S. Dresselhaus, G. Dresselhaus, A. Jorio, A. G. Souza, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon 40 (2002) 2043-2061.

DOI: 10.1016/s0008-6223(02)00066-0

Google Scholar

[23] O. Frank, G. Tsoukleri, I. Riaz, K. Papagelis, J. Parthenios, A. C. Ferrari, A. K. Geim, K. S. Novoselov, C. Galiotis, Development of a universal stress sensor for graphene and carbon fibers, Nature Communications 2 (2011) 1-7.

DOI: 10.1038/ncomms1247

Google Scholar

[24] F.H. Gojny, M.H.G. Wichmann, B. Fiedler, I.A. Kinloch, W. Bauhofer, A.H. Windle, K. Schulte, Evaluation and identification of electrical and thermal conduction mechanism in carbon nanotube/epoxy composites, Polymer 47 (2006) 2036-2045.

DOI: 10.1016/j.polymer.2006.01.029

Google Scholar

[25] K. Yang, M. Gu, Y. Guo, X. Pan, G. Mu, Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, Carbon 47 (2009) 1723-1737.

DOI: 10.1016/j.carbon.2009.02.029

Google Scholar

[26] W. Xia, T. Wang, R. Bergstraßer, S. Kundu, M. Muhler, Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption, Applied surface science 254 (2007) 247-250.

DOI: 10.1016/j.apsusc.2007.07.120

Google Scholar

[27] V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Chemical oxidation of multiwalled carbon nanotubes, Carbon 46 (2008) 833-840.

DOI: 10.1016/j.carbon.2008.02.012

Google Scholar

[28] G. Zhang, S. Sun, D. Yang, J.P. Dodelet, E. Sacher, The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment, Carbon 46 (2008) 196-205.

DOI: 10.1016/j.carbon.2007.11.002

Google Scholar

[29] Y. C. Chiang, W. H. Lin, Y. C. Chang, The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation, Applied Surface Science 257 (2011) 2401-2410.

DOI: 10.1016/j.apsusc.2010.09.110

Google Scholar

[30] S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon, Chemistry of single-walled carbon nanotubes, Acc. Chem. Res. 53 (2002) 1105-1113.

DOI: 10.1021/ar010155r

Google Scholar

[31] T. I. T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N. M. D. Brown, High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs, Carbon 43 (2005) 153-161.

DOI: 10.1016/j.carbon.2004.08.033

Google Scholar

[32] M.C. Palma, Effect of HNO3 and NH3 treatment on the catalytic oxidation of carbon catalyzed by Cu, Mo and their mixture at the eutectic composition, Fuel and Energy Abstracts 37 (1996) 421-421.

DOI: 10.1016/s0140-6701(97)83328-0

Google Scholar