A Robust Algorithm for Autotuning Controllers in Mechatronic Modules

Article Preview

Abstract:

Electric actuators are an important part of every manufacturing system. Often it is a problem to get a good motion control configuration which allows high performance tasks. This contribution shows how the mechanical load and the self-dynamics of the system associate. Based on this, it is possible to formulate an identification algorithm to estimate the mechanical load. Now all system parameters are known and the controller can compute automatically. Therefore we show the results in an experiment with a classic cascaded and a flatness-based controller.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-458

Citation:

Online since:

September 2014

Export:

Price:

* - Corresponding Author

[1] J.G. Ziegler, N.B. Nichols, Optimum Settings for Automatic Controllers, Reproduction from ASME, (1942).

Google Scholar

[2] K.J. Aström, T. Hägglund, Automatic Tuning of Simple Regulators with Specification on Phase and Amplitude Margins, Automatica, Vol. 20 No. 5, 1984, pp.645-651.

DOI: 10.1016/0005-1098(84)90014-1

Google Scholar

[3] C.C. Hang, A. P. Loh, V. U. Vasnani, Relay Feedback Auto-Tuning of Cascade Controllers, in: IEEE Transactions on Control Systems Technology, Vol. 2, No. 1, 1994, pp.42-45.

DOI: 10.1109/87.273109

Google Scholar

[4] A. Leva, F. Donida, Autotuning in cascaded systems based on a single relay experiment, in: Journal of Process Control 19, Elsevier, 2009, pp.896-905.

DOI: 10.1016/j.jprocont.2008.11.013

Google Scholar

[5] P. Mattavelli, L. Tubiana, M. Zigliotto, Simple Control Autotuning for PMSM Drives based on Feedback Relay, in: IEEE Conference on Power Electronics and Applications, 2005, pp.1-10.

DOI: 10.1109/epe.2005.219547

Google Scholar

[6] C. -C. Yu, Autotuning of PID Controllers- A Relay Feedback Approach, Springer, London, (2006).

Google Scholar

[7] M. Jelali, Automatisches Reglertuning basierend auf Methoden des Control Performance Monitoring, in: at- Automatisierungstechnik 55, Oldenbourg Wissenschaftsverlag, 2007, pp.10-19.

DOI: 10.1524/auto.2007.55.1.10

Google Scholar

[8] I. Awaya, Y. Kato, I. Miyake, M. Ito, New Motion Control with Inertia Identification Function Using Disturbance Observer, in: IEEE International Conference on Industrial Electronics, Control, Instrumentation and Automation, 1992, pp.77-81.

DOI: 10.1109/iecon.1992.254601

Google Scholar

[9] N. Li, X. Dianguo, Y. Ming, G. Xianguo, L. Zijian, On-line Inertia Identification Algorithm for Parameter Optimization in Speed Loop, accepted in: IEEE Journal of Transactions on Power Electronics, (2014).

Google Scholar

[10] Electrical Rotary Modul. http: /www. schunk. com/schunk_files/attachments/OM_AU_ERS-48V_EN. pdf [10. 06. 2014].

Google Scholar

[11] O. Zirn, S. Weikert, Modellbildung und Simulation hochdynamischer Fertigungssysteme, Springer, Berlin Heidelberg, (2006).

Google Scholar

[12] R. Isermann, Mechatronische Systeme, Springer, Berlin Heidelberg, (2008).

Google Scholar

[13] K. J. Aström, P. Eykhoff, System Identification- A Survey, Automatica Vol. 7, 1971, pp.123-162.

Google Scholar

[14] R. Isermann, Identification of Dynamic Systems, Springer, Berlin Heidelberg, (2011).

Google Scholar

[15] T. Söderström, P. Stoica, System Identification, Prentice Hall, (1989).

Google Scholar

[16] U. Riefenstahl, Elektrische Antriebssysteme- Grundlagen, Komponenten, Regelverfahren, Bewegungssteuerung, Vieweg Teubner, (2010).

DOI: 10.1007/978-3-658-38008-3

Google Scholar

[17] D. Schröder, Elektrische Antriebe- Regelung von Antriebssystemen, Springer, Berlin Heidelberg, (2009).

DOI: 10.1007/978-3-642-30096-7

Google Scholar

[18] J. Levine, Analysis and Control of Nonlinear Systems- A Flatness-based Approach, Springer, Berlin Heidelberg, (2009).

Google Scholar

[19] M. Zeitz, Differentielle Flachheit: Eine nützliche Methodik auch für lineare SISO-Systeme, in: at- Automatisierungstechnik 58, Oldenbourg Wissenschaftsverlag, 2010, pp.5-13.

DOI: 10.1524/auto.2010.0815

Google Scholar

[20] V. Hagenmeyer, M. Zeitz, Flachheitsbasierter Entwurf von linearen und nichtlinearen Vorsteuerungen, in: at- Automatisierungstechnik 52, Oldenbourg Wissenschaftsverlag, 2004, pp.3-12.

DOI: 10.1524/auto.52.1.3.25428

Google Scholar

[21] G. Kreisselmeier, Struktur mit zwei Freiheitsgraden, in: at- Automatisierungstechnik 47, Oldenbourg Wissenschaftsverlag, 1999, pp.266-269.

DOI: 10.1524/auto.1999.47.6.266

Google Scholar