Studies on Control of Erratic Release of Ketoprofen from Commercial Patches for Sustained Pain-Relief Using Silica Microparticles

Article Preview

Abstract:

Sustained release of pharmaceutical drug has been a challenge to medical practitioners for a very long time. This is a requirement of anaesthetists, endoscopic surgeons and even dentists. Though commercial bandages are already available for pain and inflammation control, their drug release mechanism is mostly unknown, and is predominantly erratic. This poses a dilemma for medical practitioners, due to which, even if it is recommended to keep patch adhered to skin for 6 hours, it is often replaced in couple of hours or many a times a good amount of undelivered drug remains in the patch and gets wasted. Combining this need for systematic release of drug through such commercial patches and the property of sustained release of drug molecules through mesoporous silica particles, led to an idea for using a coat of Silica Microparticles (SiMPs) on to these patches to achieve controlled and sustained release of drug, mainly Ketoprofen (KP) (a pain-relieving commercial drug). SiMPs were synthesised and coated with pure KP drug on one hand and on another a thin layer of SiMPs was coated on the commercial KP patch. The sustained release studies were done for duration of 6-8 hours. The structural chemistry and the interaction chemistry of the silica-trapped-KP showed that the carboxylic acidic group of hydrogen from KP makes partial bond with silica through weak van-der-Waal forces interaction and efficiency of 75 % of drug loading. The commercial KP patch showed initial burst and later erratic release. However, KP patches upon coating with SiMPs showed controlled release of drug, with the initial burst release and subsequent sustained release in the agar platform-based drug release study. Loose conjugational chemistry, with good bio-availability of SiMPs provides a fine control over the release mechanism, which probably forms a fine mesh-matrix through which the drug slowly percolates. Further, since the particles are not too small, the passage of these particles through the skin-barrier is also less-probable, thereby imparting a facilitative effect for drug passage, in a controlled fashion. Hence a simple strategy is proposed to achieve better medicinal patches for pain-control and better drug efficacy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-97

Citation:

Online since:

November 2016

Export:

Price:

* - Corresponding Author

[1] L. Nelson, R. Schwaner, J. Med. Toxicol. 5(2009) 230-241.

Google Scholar

[2] D. S. Goldberg, S. J. McGee, BMC Public Health11 770(2011) 1-5.

Google Scholar

[3] V. S. Stabile, Am. Soc. Anestheiologists78 (2014) 24-27.

Google Scholar

[4] B. H. McCarberg, C. E. Argoff, Int. J. Clin. Pract. 64 (2010)1546-1553.

Google Scholar

[5] K. Sameja, a M. I. Makwana, A. Khodakiya, B. Sonagara, Intenational J. Innov. Pharm. Sci. (2014).

Google Scholar

[6] D. -G. Yu, L. -M. Zhu, K. White, C. Branford-White, Health (Irvine. Calif). 01 (2009) 67-75.

Google Scholar

[7] E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders, G. E. Wnek, J. Control. Release 81 (2002)57-64.

DOI: 10.1016/s0168-3659(02)00041-x

Google Scholar

[8] B. V Bhaskara Rao, R. Mukherji, G. Shitre, F. Alam, A. A. Prabhune, S. N. Kale, Mater. Sci. Eng. C. Mater. Biol. Appl. 34(2014) 9-14.

DOI: 10.1016/j.msec.2013.10.002

Google Scholar

[9] C. Barbé, J. Bartlett, L. Kong, K. Finnie, H. Q. Lin, M. Larkin, S. Calleja, A. Bush, G. Calleja, Adv. Mater. 16 (2004) 1959-(1966).

DOI: 10.1002/adma.200400771

Google Scholar

[10] S. Kwon, R. K. Singh, R. a Perez, E. a Abou Neel, H. -W. Kim, W. Chrzanowski, J. Tissue Eng. 4 (2013)l-18.

Google Scholar

[11] E. Stober, W., Fink, A., Bohn, J Coll Interf Sci. 26 (1968) 62-69.

Google Scholar

[12] L. Tang, J. Cheng, Nano Today, 8 (2013)290-312.

Google Scholar

[13] N. D. Singho, M. R. Johan, Int. J. Electrochem. Sci. 7 (2012)5604-5615.

Google Scholar

[14] T. Kim, L. Nguyen, T. Ai, T. Nguyen, V. P. Dang, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013)1-5.

Google Scholar

[15] H. Rezvani Nikabadi, N. Shahtahmasebi, M. Rezaee Rokn-Abadi, M. M. Bagheri Mohagheghi, E. K. Goharshadi, Phys. Scr. 87 (2013) 1-6.

DOI: 10.1088/0031-8949/87/02/025802

Google Scholar

[16] I. A. Rahman, V. Padavettan, J. Nanomater. (2012) 1-16.

Google Scholar

[17] M. A. E. L. Nabarawi, D. H. Hassen, A. A. Taha, Int. J. Pharm. Pharm. Sci. 6 (2014)183-191.

Google Scholar

[18] A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A. Kareiva, Mater. Sci. 10 10 (2004) 287-290.

Google Scholar

[19] A. Alessi, S. Agnello, G. Buscarino, F. M. Gelardi, J. Non. Cryst. Solids362 (2013)20-24.

Google Scholar

[20] N. D. Singho, M. R. Johan, Int. J. Electrochem. Sci., 7 (2012) 5604 - 5615.

Google Scholar

[21] G. Buscarino, V. Ardizzone, G. Vaccaro, F. M. Gelardi, J. Non. Cryst. Solids357 (2011) 1866-1870.

Google Scholar

[22] M. L. Vueba, M. E. Pina, F. Veiga, J. J. Sousa, L. a E. B. de Carvalho, Int. J. Pharm. 307 (2006) 56-65.

Google Scholar

[23] B. J. Saikia, J. Mod. Phys. 01 (2010)206-210.

Google Scholar

[24] J. Ji, S. Shu, F. Wang, Z. Li, J. Liu, Y. Song, Y. Jia, Nanoscale Res. Lett. 9 534 (2014) 1-9.

Google Scholar

[25] B. Tzankov, K. Yoncheva, M. Popova, A. Szegedi, G. Momekov, J. Mihály, N. Lambov, Microporous Mesoporous Mater. 171 (2013)131-138.

DOI: 10.1016/j.micromeso.2012.12.037

Google Scholar

[26] A. Hussain, G. Khan, S. Shah, Pak J Pharm252012 (2012) 227-233.

Google Scholar