Pathways to Optimize Performance/Cost Ratio of Powder Metallurgy Titanium – A Perspective

Article Preview

Abstract:

Powder Metallurgy (PM) Titanium has great potentials as low-cost alternative for Ti manufacturing, but the use of conventional PM processes for producing Ti products is also limited due to reasons related to either that the properties are not as satisfactory as that of equivalent wrought materials, or the cost advantage is not as significant as it was expected. Therefore, the main challenge of developing PM Ti is to increase performance to cost ratio. Reduction of costs and improvement of final products must involve every step of the entire process. This article attempts to assemble a set of processes by selecting individual unit processes that when combined synergistically could offer the optimum performance to cost ratio. This set of processes include using low cost powders, using automatable near-net-shape compaction techniques, and using sintering using sintering technologies that can produce parts with very fine grain sizes, thus satisfactory mechanical properties, in as-sintered state.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

15-23

Citation:

Online since:

August 2012

Export:

Price:

[1] Information on http: /www. metalprices. com.

Google Scholar

[2] Oak Ridage National Laboratory, Aerospace Workshop-Summary Report, (2010).

Google Scholar

[3] S. Seong, O. Younossi, B. W. Goldsmith, T. lang, and M. Neumann, Titanium-Industrial Base, Price Trends, and Technology Initiatives, RAND Corporation, Santa Monica, CA, (2009).

DOI: 10.7249/mg789

Google Scholar

[4] F. H. Froes and D. Eylon, Powder metallurgy of titanium alloys, Inter. Mat. Rev., 35 (1990) 162-182.

Google Scholar

[5] D. Eylon, F. H. Froes, S. Abkowitz, Titanium powder metallurgy alloys and composites, in P. W. Lee, Y. Trudel, R. Iacocca, R. M. German, B. L. Ferguson, W. B. Eisen, K. Moyer, D. Madan, H. Sanderow (Eds. ), ASM Handbook Vol. 7 Powder Metal Technologies and Applications, ASM International, Ohio, 1990 pp.874-886.

Google Scholar

[6] H. Wang, Z. Z. Fang, and P. Sun, A critical review of mechanical properties of powder metallurgy titanium, Inter.J. Powder Metall., 46 (2010) 45-57.

Google Scholar

[7] G. Lutjering and J. C. Williams, Titanium, 2nd ed., Springer Verlag, Heidelberg, Germany, (2007).

Google Scholar

[8] V. A. Duz, O. Ivasishin, C. Lavender, V. S. Moxson, and V. V. Telin, Innovative Powder Metallurgy Process for Producing Low Cost Titanium and Titanium and Titanium Alloy Components, presented at the Titanium 2008 24th Annual ITA Conference & Exhibition, Las Vegas, Nevada, USA, (2008).

DOI: 10.1016/b978-0-12-800054-0.00008-3

Google Scholar

[9] O. M. Ivasishin, V. M. Anokhin, A. N. Demidik, and D. G. Savvakin, Cost-effective blended elemental powder metallurgy of titanium alloys for transportation application, Key Eng. Mater., 188 (2000) 55-62.

DOI: 10.4028/www.scientific.net/kem.188.55

Google Scholar

[10] O. M. Ivasishin, D. G. Savvakin, V. S. Moxson, K. A. Bondareval, and F. H. S. Froes, Titanium powder metallurgy for automotive components, Mater. Technol., 17 (2002) 20-25.

DOI: 10.1080/10667857.2002.11752959

Google Scholar

[11] O. M. Ivasishin, D. G. Savvakin, V. S. Moxson, V. A. Duz, F. H. Froes, and R. Davies, Low-cost PM titanium materials for automotive applications, in TMS-2005 134th Annual Meeting & Exhibition, San Francisco, CA, USA, (2005).

DOI: 10.1002/9781118788028.ch14

Google Scholar

[12] H. Wang, M. Lefler, Z. Fang, T. Lei, S. M. Fang, J. M. Zhang, and Q. Zhao, Titanium and Titanium Alloy via Sintering of TiH2, Key Eng. Mater., 436 (2010) 157-163.

DOI: 10.4028/www.scientific.net/kem.436.157

Google Scholar

[13] P. Sun, H. Wang, M. Lefler, Z. Fang, T. Lei, S. M. Fang, W. Tian, and H. Li, Sintering of TiH2: A New Approach for Powder Metallurgy Titanium, presented at the PM2010 Powder Metallurgy World Congress, Florence, Italy, (2010).

Google Scholar

[14] EHKTechnologies, Summary of Emerging Titanium Cost Reduction Technologies-A Study Performed For US Department of Energy And Oak Ridge National Laboratory, (2003).

Google Scholar

[15] D. R. Armstrong, S. R. Borys, and R. P. Anderson, U.S. Patent 2008/0, 187, 455 (2008).

Google Scholar

[16] S. A. Kasparov, A. G. Klevtsov, A. I. Cheprasov, V. S. Moxson, and V. A. Duz, US 2010/0, 166, 643, (2010).

Google Scholar

[17] R. Oberacker, Powder Compaction by Dry Pressing, in R. Riedel, I. Chen (Eds), Ceramics Science and Technology, Viley-VCH, Weinheim, Germany, 2012, pp.3-38.

Google Scholar

[18] Z. Fang, P. Sun and H. Wang, Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys, Adv. Eng. Mater. (2012), doi: 10. 1002/adem. 201100269.

DOI: 10.1002/adem.201100269

Google Scholar

[19] F. H. Froes, O. N. Senkov, and J. I. Qazi, Hydrogen as a temporary alloying element in titanium alloys: thermohydrogen processing, Inter. Mat. Rev., 49 (2004) 227-45.

DOI: 10.1179/095066004225010550

Google Scholar

[20] E. S. Hodge and F. Tavenner, U.S. Patent 5, 816, 090 (1998).

Google Scholar

[21] T. W. Reddoch, Pneumatic Isostatic Forging, in P. W. Lee, Y. Trudel, R. Iacocca, R. M. German, B. L. Ferguson, W. B. Eisen, K. Moyer, D. Madan, H. Sanderow (Eds. ), ASM Handbook Vol. 7 Powder Metal Technologies and Applications , ASM International, Ohio, 1990, pp.638-641.

Google Scholar