Synthesis and Study of Optical and Electrical Characteristics of Single-Wall Carbon Nanotube/Gold Nanohybrid

Article Preview

Abstract:

Au nanoparticles of average size 3.0 nm have been deposited on SWCNT surfaces following a very lucid wet chemical process. The SWCNT/Au nanohybrid material has been characterized using field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis (EDAX), X-ray diffraction (XRD) study and Raman spectroscopy. Both optical and electrical characteristics of the hybrid sample have been studied. The PL emission intensity of the nanohybrid structure has been found to decrease on increasing the excitation wavelength in the plasmon absorption region. High temperature DC conductivity has increased appreciably when pristine SWCNT is treated with Au NPs. Such SWCNT- supported gold nanoparticles can serve as efficient catalysts in chemical industry. Also the tendency of gold-based nanoparticles to attach with biological molecules may make them useful in medical diagnostics. Increase in conductivity of SWCNT on decorating with Au NPs can find practical application as conducting filler in polymer composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-33

Citation:

Online since:

February 2012

Export:

Price:

[1] L. Zhu, G. Lu, S. Mao, J. Chen, Ripening of silver nanoparticles on carbon nanotubes, Nano Brief Rep. Rev. 2(3)(2007) 149-156.

Google Scholar

[2] P. Martis, A. Fonseca, Z. Mekhalif, J. Delhalle, Optimization of cuprous oxide nanocrystals deposition on multiwalled carbon nanotubes, J. Nanopart. Res. 12 (2010) 439-448.

DOI: 10.1007/s11051-009-9652-8

Google Scholar

[3] M. Scolari, A. Mews, N. Fu, A. Myalitsin, T. Assmus, K. Balasubramanian, M. Burghard, K. Kern, Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles, J. Phys. Chem. C. 112 (2008) 391-396.

DOI: 10.1021/jp076190i

Google Scholar

[4] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer Series in Materials Science, Vol. 25, Springer, Berlin, (1995).

DOI: 10.1007/978-3-662-09109-8

Google Scholar

[5] M. Penza, R. Rossi, M. Alvisi, G. Cassano, E. Serra, Functional characterization of carbon nanotube networked films functionalized with tuned loading of Au nanoclusters for gas sensing applications, Sens. Actua. B. 140 (2009)176-184.

DOI: 10.1016/j.snb.2009.04.008

Google Scholar

[6] Z. Liu, X. Lin, J.Y. Lee, W. Zhang, M. Han, L. M. Gan, Preparation and characterization of platinum-based electrocatalyst on multiwalled carbon nanotubes for proton exchange membrane fuel cells, Langmuir18(10) (2002) 4054-4060.

DOI: 10.1021/la0116903

Google Scholar

[7] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, Preparation and characterization of multiwalled carbon nanotube supported platinum for cathode catalysts of direct methanol fuel cells, J. Phys. Chem. B. 107(26)(2003) 6292-6299.

DOI: 10.1021/jp022505c

Google Scholar

[8] B.J. Landi, S.L. Castro, H.J. Ruf, C.M. Evans, S.G. Bailey, R.P. Raffaelle, CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells, Sol. Energy Mater. Sol. Cells 87(1-4)(2005) 733-746.

DOI: 10.1016/j.solmat.2004.07.047

Google Scholar

[9] I. Robel, B.A. Bunker, P.V. Kamat, Single-w alled carbon nanotube-CdS nanocomposites as light-harvesting assemblies: photoinduced charge-transfer interactions, Adv. Mater. 17(20) (2005) 2458-2463.

DOI: 10.1002/adma.200500418

Google Scholar

[10] Y. Lin, K.A. Watson, S. Ghose, J.G. Smith Jr., T.V. Williams, R.E. Crooks, W. Cao, J.W. Connell, Direct mechanochemical formation of metal nanoparticles on carbon nanotubes, J. Phys. Chem. C 113 (2009) 14858-14862.

DOI: 10.1021/jp905076u

Google Scholar

[11] G.M.A. Rahman, D.M. Guldi, E. Zambon, L. Pasquato, N. Tagmatarchis, M. Prato, Dispersable carbon nanotube/gold nanohybrids: evidence for strong electronic interactions, Small 1(5) (2005) 527-530.

DOI: 10.1002/smll.200400146

Google Scholar

[12] V. Biju, T. Itoh, Y. Makita, M. Ishikawa, Close-conjugation of quantum dots and gold nanoparticles to sidewall functionalized single-walled carbon nanotube templates, J. Photochem. Photobio. A: Chem. 183 (2006) 315-321.

DOI: 10.1016/j.jphotochem.2006.06.032

Google Scholar

[13] R. Cui, H. Huang, Z. Yin, D Gao, J.J. Zhu, Horseradish peroxide-functionalized gold nanoparticles label for amplified immunoanalysis based on gold nanoparticles/carbon nanotubes hybrids modified biosensor, Biosens. Bioelectr. 23 (2008) 1666-1673.

DOI: 10.1016/j.bios.2008.01.034

Google Scholar

[14] H. Chu, Z. Jin, Y. Zhang, W. Zhou, L. Ding, Y. Li, Site-specific deposition of gold nanoparticles on SWNTs, J. Phys. Chem. C. 112 (2008) 13437-13441.

DOI: 10.1021/jp801088r

Google Scholar

[15] H. Chu, J. Wang, L. Ding, D. Yuan, Y. Zhang, J. Liu, Y. Li, Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface enhanced Raman spectroscopy, J. Am. Chem. Soc. 131(40) (2009).

DOI: 10.1021/ja9035972

Google Scholar

[16] H.C. Choi, M. Shim, S. Bangsaruntip, H.J. Dai, Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes, J. Am. Chem. Soc. 124(31) (2002 ) 9058-9059.

DOI: 10.1021/ja026824t

Google Scholar

[17] Y. Shi, R. Yang, P.K. Yuet, Easy decoration of carbon nanotubes with well dispersed gold nanoparticles and the use of the material as an electrocatalyst, Carbon 47 (2009)1146-1151.

DOI: 10.1016/j.carbon.2008.12.049

Google Scholar

[18] R. Graupner, Raman spectroscopy of covalently functionalized single-wall carbon nanotubes, J. Raman Spectrosc. 38 (2007) 673-683.

DOI: 10.1002/jrs.1694

Google Scholar

[19] A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley, Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering, Nature 388 (1997) 257-259.

DOI: 10.1038/40827

Google Scholar

[20] G.U. Sumanasekera, J.L. Allen, S.L. Fang, A.L. Loper, A.M. Rao, P.C. Eklund, Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid, J. Phys. Chem. B 103(21) (1999) 4292-4297.

DOI: 10.1021/jp984362t

Google Scholar