Thickness-Dependent Tensile Behavior of Cu-Mn Alloys under Different Dislocation Slip Modes

Article Preview

Abstract:

To explore the role of dislocation slip mode playing in the size effect of mechanical behavior of metallic materials, the tensile behavior of Cu-5at.%Mn and Cu-20at.%Mn alloys with thickness (t) spanning from 0.1 to 2.0 mm is investigated. The results reveal that the yield strength σYS of Cu-5at.%Mn alloy displays an independence of thickness, whereas the ultimate tensile strength σUTS and the uniform elongation δ show an obvious size effect. The σUTS and δ first slightly decrease as t is reduced from 2.0 to 0.5 mm, but evidently drop when t is below 0.5 mm. A similar size effect is also exhibited in Cu-20at.%Mn alloy; however, the variation trend of “the smaller the weaker” in size effect can be weakened by the planar slip of dislocations occurring during the deformation of this alloy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 294)

Pages:

104-110

Citation:

Online since:

July 2019

Export:

Price:

* - Corresponding Author

[1] W. Menz, J. Mohr, O. Paul, Microsystem technology, Birkhäuser Basel 1 (2001) 471-478.

Google Scholar

[2] W.D. Nix, Mechanical properties of thin films, Metall. Trans. A 20 (1989) 2217.

Google Scholar

[3] M. Ohring, Rreliability and failure of electronic materials and devices, Academic Press (1998) 675-692.

Google Scholar

[4] E. Arzt, Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta Mater. 46 (1998) 5611-5626.

DOI: 10.1016/s1359-6454(98)00231-6

Google Scholar

[5] G. Dehm, C. Motz, C. Scheu, H. Clemens, P.H. Mayrhofer, Ch. Mitterer, Mechanical size effects in miniaturized and bulk materials, Adv. Eng. Mater. 8 (2010) 1033-1045.

DOI: 10.1002/adem.200600153

Google Scholar

[6] M.G.D. Geers, W.A.M. Brekelmans, P.J.M. Janssen, Size effects in miniaturized polycrystalline FCC samples: Strengthening versus weakening, Int. J. Solids Struct. 43 (2006) 7304-7321.

DOI: 10.1016/j.ijsolstr.2006.05.009

Google Scholar

[7] G.P. Zhang, K.H. Sun, B. Zhang, Tensile and fatigue strength of ultrathin copper films, Mater. Sci. Eng. A 483 (2008) 387-390.

Google Scholar

[8] M. Lederer, V. Gröger, G. Khatibi, B. Weiss, Size dependency of mechanical properties of high purity aluminium foils, Mater. Sci. Eng. A 527 (2010) 590-599.

DOI: 10.1016/j.msea.2009.08.016

Google Scholar

[9] X.P. Zhang, S.F. Feng, X.T. Hong, J.Q. Liu, Orientation-related specimen thickness effects on mechanical properties of hot extruded AZ31B magnesium alloy, Mater. Des. 46 (2013) 256-263.

DOI: 10.1016/j.matdes.2012.10.037

Google Scholar

[10] M.A. Haque, M.T.A. Saif, Strain gradient effect in nanoscale thin films, Acta Mater. 51 (2003) 3053-3061.

DOI: 10.1016/s1359-6454(03)00116-2

Google Scholar

[11] C.Y. Dai, G.P. Zhang, C. Yan, Size effects on tensile and fatigue behavior of polycrystalline metal foils at the micrometer scale, Philos. Mag. 91 (2011) 932-945.

DOI: 10.1080/14786435.2010.538017

Google Scholar

[12] M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton, Length scale and time scale effects on the plastic flow of fcc metals, Acta Mater. 49 (2001) 4363-4374.

DOI: 10.1016/s1359-6454(01)00149-5

Google Scholar

[13] J. R. Greer, W. D. Nix, Nanoscale gold pillars strengthened through dislocation starvation, Phys. Rev. B 73 (2006) 1.

DOI: 10.1103/physrevb.73.245410

Google Scholar

[14] J.R. Greer, W.C. Oliver, W.D. Nix, Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Appl. Phys. A 53 (2005) 1821-1830.

DOI: 10.1016/j.actamat.2004.12.031

Google Scholar

[15] G. Simons, C. Weippert, J. Dual, J. Villain, Size effects in tensile testing of thin cold rolled and annealed Cu foils, Mater. Sci. Eng. A 416 (2006) 290-299.

DOI: 10.1016/j.msea.2005.10.060

Google Scholar

[16] J. Xu, C.Y. Dai, B. Zhang, G.P. Zhang, Strain-gradient dependent fatigue behavior of micron-thick copper single crystal foils, Comp. Mater. Sci. 85 (2014) 223-229.

DOI: 10.1016/j.commatsci.2014.01.004

Google Scholar

[17] Z.Y. Wang, D. Han, X.W. Li, Competitive effect of stacking fault energy and short-range clustering on the plastic deformation behavior of Cu-Ni alloys, Mater. Sci. Eng. A, 679 (2017) 484-492.

DOI: 10.1016/j.msea.2016.10.064

Google Scholar

[18] D. Han, Z.Y. Wang, Y. Yan, F. Shi and X.W. Li, A good strength-ductility match in Cu-Mn alloys with high stacking fault energies: Determinant effect of short range ordering, Scr. Mater. 133 (2017) 59-64.

DOI: 10.1016/j.scriptamat.2017.02.010

Google Scholar

[19] X.W. Li, N. Peng, X.M. Wu, Z.G. Wang, Plastic-strain-amplitude dependence of dislocation structures in cyclically deformed <112>-oriented Cu-7 at. pct Al alloy single crystals, Metall. Mater. Trans. A 45 (2014) 3835-3843.

DOI: 10.1007/s11661-014-2353-7

Google Scholar

[20] Y. Yan, M. Lu, W.W. Guo, X.W. Li, Effect of pre-fatigue deformation on thickness-dependent tensile behavior of coarse-grained pure aluminum sheets, Mater. Sci. Eng. A 600 (2014) 99–107.

DOI: 10.1016/j.msea.2014.02.008

Google Scholar

[21] M.Q. Liu, Y.L. Liu, Y. Yan, D. Han, X.W. Li, Thickness-dependent tensile and fatigue behavior of a single-slip-oriented Cu single crystal, Cryst. Res. Technol. 52 (2017) 1700178.

DOI: 10.1002/crat.201700178

Google Scholar